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A B S T R A C T   

In order to accomplish diverse tasks successfully in a dynamic (i.e., changing over time) construction environ
ment, robots should be able to prioritize assigned tasks to optimize their performance in a given state. Recently, a 
deep reinforcement learning (DRL) approach has shown potential for addressing such adaptive task allocation. It 
remains unanswered, however, whether or not DRL can address adaptive task allocation problems in dynamic 
robotic construction environments. In this paper, we developed and tested a digital twin-driven DRL learning 
method to explore the potential of DRL for adaptive task allocation in robotic construction environments. Spe
cifically, the digital twin synthesizes sensory data from physical assets and is used to simulate a variety of dy
namic robotic construction site conditions within which a DRL agent can interact. As a result, the agent can learn 
an adaptive task allocation strategy that increases project performance. We tested this method with a case project 
in which a virtual robotic construction project (i.e., interlocking concrete bricks are delivered and assembled by 
robots) was digitally twinned for DRL training and testing. Results indicated that the DRL model’s task allocation 
approach reduced construction time by 36% in three dynamic testing environments when compared to a rule- 
based imperative model. The proposed DRL learning method promises to be an effective tool for adaptive task 
allocation in dynamic robotic construction environments. Such an adaptive task allocation method can help 
construction robots cope with uncertainties and can ultimately improve construction project performance by 
efficiently prioritizing assigned tasks.   

1. Introduction 

Construction is known for its physical and psychological stress on 
workers as well as for its hazardous working conditions. In addition, the 
construction industry suffers from a lack of skilled laborers [1], an aging 
worforce [2], and stagnant labor productivity growth compared to other 
industries (e.g., manufacturing) [3]. Meanwhile, recent robotics tech
nology advancements are addressing safety concerns and stagnant labor 
productivity issues in construction work: on-site autonomous robots 
have been used to help human workers and/or reduce repetitive tasks. 
However, to accomplish more complicated tasks and to reap more 
benefits from the autonomous robot in a dynamic construction site 
environment, robotic construction technology should move beyond 

mere autonomy and be truly adaptive to site conditions. Therefore, there 
is a need for a technical approach to teach robots an adaptive strategy 
(policy). The adaptive policy refers to a task allocation policy — the 
robot’s way of prioritizing assigned tasks and executing them in given 
states. For example, if the robot aims to reduce project cost, its policy 
will prioritize tasks that can reduce project cost and execute them 
accordingly. 

In recent years, several researchers have demonstrated the potential 
of deep reinforcement learning (DRL) —which enables an agent to learn 
an action policy through repetitive interactions with a virtual simulation 
environment— for a more adaptive agent policy [4,5]. Such adaptivity 
may make robots better suited to interacting in more uncertain envi
ronments without specific prior knowledge or instructions (e.g., task 
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allocation rules). Once the DRL agent has learned the adaptive policy in 
the simulation environment, this trained policy can be deployed in real 
robotic applications. However, even though DRL may adapt well to 
static and/or deterministic environments [4], from a practical point of 
view, it is not thoroughly researched whether a DRL agent can learn an 
adaptive task allocation policy in an unstructured construction envi
ronment where the robot might encounter and deal with changing site 
conditions over time. 

In order to address this gap in knowledge, we have developed and 
tested a digital twin-driven DRL framework to investigate DRL’s po
tential for adaptive task allocation in a dynamic and unstructured ro
botic construction environment. The digital twin is a digital 
representation of an asset or system and mimics its real-world behavior 
with the aim of managing, planning, predicting, and demonstrating 
current and future construction processes and models via synchronized 
representations [6,7]. The digital twin can capture overall changing site 
conditions in near real-time and creates a virtual simulation environ
ment with which a DRL agent can interact. For our purposes here, “real- 
time” means an event or function is processed instantaneously (i.e., 
there is no noticeable delay between the action and its effect). In this 
environment, the DRL agent receives positive or negative rewards 
through the interactions and accordingly updates the parameters of the 
policy network. Therefore, this paper presents a new paradigm of the 
adaptive task allocation method in robotic construction by investigating 
the potential of the DRL algorithm. We tested whether the DRL agent 
consistently learns task allocation policy in the digital twin environment 
with a case project where virtual robots load and assemble prefabricated 
concrete bricks to build a mock-up bridge. Then, we validated whether 
such a policy shows higher performance than a rule-based imperative 
algorithm when applied in different environment that reflect changing 
site conditions. 

The main contribution of this study is to demonstrate the potential of 
a digital twin-driven DRL framework for finding a task allocation policy 
that is adaptive to dynamic robotic construction environments. Such an 
adaptive task allocation method can help construction robots cope with 
more complicated and uncertain tasks than previously available 
methods, ultimately improving project performance. 

2. Digital twin and reinforcement learning in construction 

2.1. Unstructured and evolving construction environments 

There are many different tasks in construction project such as 
bricklaying, painting, brick assembly, material loading, and bulldozing. 
Some of them are too repetitive and hazardous to human workers. Ro
botics can be a promising solution to address the issues. Robots can take 
over repetitive or physically demanding tasks or they can assist human 
workers to perform tasks safely and efficiently. However, construction 
robots (i.e., robots operating in the construction site) should perform 
tasks in unstructured and evolving site conditions [8]. For example, 
humans and equipment are moving around without predetermined path, 
delivery rate of raw materials from the factory to the site is changing 
over time according to the transportation condition, and the operation 
patterns of heavy equipment can be different every day. For this reason, 
construction robots should understand changing site environment 
quickly, and make decisions (e.g., task allocation) adaptively consid
ering the surrounding environment. 

2.2. Digital twin 

The concept of a “digital twin” as a data centric asset management 
and control has emerged over the past decade mainly in manufacturing 
and production domains [9]. Although there is no commonly agreed 
definition of the term “digital twin” in the context of the construction 
domain [10], this concept should be used as either digital representa
tions of physical assets (e.g., building objects, materials, robots, and 

workers) or systems mirroring a project’s real-world behavior [11]. 
Particularly, in this paper, we emphasize the enabling potential of a 
digital twin for testing different “what-if” scenarios (i.e., to anticipate 
the effect of a process given a predefined situation) in robotic con
struction. Compared to a normal simulation imitating, real-world pro
cess or system, an ideal digital twin enables a more data-driven, real- 
world-oriented simulation based on cyber-physical synchronicity. The 
digital twin can be updated or evolve with an updated data feed from 
physical space, which may reduce discrepancies between physical and 
virtual spaces. Thus, simulation with a digital twin can reflect reality 
better than the normal simulation (i.e., a reduced discrepancy between 
reality and simulation) and any results from a digital twin simulation 
can be directly actuated to address real-world problems. Furthermore, 
various synthetic conditions can be simulated by using a digital twin 
model and historical dataset. For example, based on a historical dataset 
of raw materials’ arrival rates at a jobsite, the arrival rate of raw material 
can be defined as a model parameter to simulate different arrival rate 
conditions that are likely to happen in the real-world construction site. 
As another example, after collecting historical traffic patterns of 
equipment at a construction site, we can extrapolate different traffic 
patterns that are likely to occur in the future. Thus, the digital twin is 
central to our study because it can be used to simulate a variety of ro
botic construction conditions. 

Additionally, an IoT sensor designed to collect physical assets’ con
ditions, convert them into digital signals, and connect to the internet for 
data communication [12]. can be a desirable method for enabling cyber- 
physical synchronicity. With the aid of IoT sensors, physical assets’ 
conditions and their digital twin counterparts can be synchronized in 
near real-time. In addition, the Robot Operating System (ROS), an open- 
source robotics development framework that can be used to control the 
motion of real robots, allows real robots and their corresponding twins 
to be synchronized in terms of their motion [13]. Thus, we may assume 
that the digital twin can mirror all entities based on IoT sensors and ROS 
that exist in robotic construction. 

2.3. Reinforcement learning 

Usually, the RL is one of three basic machine learning methods, 
alongside supervised learning and unsupervised learning [14]. RL differs 
from the other two methods, which learn from massive datasets that are 
collected once and then reused, in that RL uses a trial-and-error feedback 
loop that requires active interaction with an environment to collect data 
[15]. An RL agent receives positive/negative rewards for its actions from 
the environment, with the aim of learning to select actions that maxi
mize the accumulated reward [15]. This approach is particularly ad
vantageous for robot control problems in construction wherein it is 
expensive, time-consuming to collect a large dataset for training a model 
[16]. As long as there is a realistic construction simulation environment 
for the RL agent to interact with, RL can learn control policy without the 
collected dataset [17]. 

2.4. Markov decision process 

The typical RL algorithm uses the formal framework of the Markov 
Decision Process (MDP) which determines the action given a full set of 
observation data [18]. MDP is built on an assumption that future process 
states depend only on the current state. We assume that our task allo
cation problem will follow the MDP process. MDP is defined by the tuple 
M = (S, A, P, R, γ, T), where S is the set of states of the system (e.g., 
locations of robots, assembly progress of robots, and availability of the 
raw materials); A is the set of actions (e.g., assembly sequence and de
livery speed); P defines the probability for a transition from the current 
state to a next state; R defines the reward according to the selected 
agent’s action; γ is a discount factor, ranging from 0 to 1, a reward R that 
occurs t steps in the future from the current state, is multiplied by γt to 
emphasize its importance to the current state; and T is the length of the 
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learning iterations. At each decision point t, the agent observes the 
current state st ∈ S and chooses an action at ∈ A then, gets a new state 
st+1 with the probability P and receives a reward rt ∈ R. The objective of 
an RL is to find a policy πθ, parameterized by θ, with the objective of 
maximizing the cumulative reward (Eτ) throughout the episode: 

max
θ

Eτ

[
∑T

t=0
γtrt(st, at)

]

(1)  

where τ denotes the trajectory sequence.: {s0,a0,r0,s1,a1,r1,⋯,sT,aT,rT}

2.5. Policy gradient algorithm 

The policy gradient (PG) algorithm is a type of RL technique that 
relies on optimizing parameterized function θ to optimize the policy 
directly with respect to the long-term cumulative reward [15]. The PG 
algorithm has higher learning efficiency than other RL methods when 
the state and action space are large (high-dimensional) or continuous, 
making it suitable for controlling robot movement and/or operations in 
a complicated environment [19]. The PG computes an estimate of the 
gradient of the long-term cumulative reward expected of a given policy, 
and then updates the policy parameters in the gradient direction. If we 
use the cumulative reward as an objective function, we can derive the 
following equation for estimating the gradient [18]: 

ĝ = Êt[∇θlogπθ(at|st)Ât ] (2)  

where πθ (at is action and, st is a state at time t) is a stochastic policy (i.e., 
probability of taking an action at at given state st), Ât is an estimator of 
the “advantage function” at time t [21]. The advantage function de
scribes an expected average reward when following the policy over the 
sampled trajectories [20]. 

2.6. Proximal policy optimization 

While various forms of the PG method exist, proximal policy opti
mization (PPO) has demonstrated comparable or better performance 
than recent PG approaches and is much simpler to implement [20]. PPO 
enables multiple updates per minibatch sample to promote sample ef
ficiency and guarantees the stability of policy optimization by limiting 
the update amplitude of the policy [22]. The PPO algorithm defines a 
“clipped surrogate objective” which constrains the size of the policy 
change at each learning step using a clip: 

LCLIP(θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1 − ∊, 1 + ∊)Ât ] (3)  

where ∊ is a clip hyperparameter, and rt(θ) is the probability ratio 
defined in Equation (4): 

rt(θ) =
πθ(at |st)

πθold(at |st)

(4) 

This ratio describes the difference between our new and old policies, 
which enables the clip function to discourage large policy changes. This 
not only leads to less variance in agent training in a construction envi
ronment which includes dynamic and stochastic processes but also en
sures that the agent does not make irrecoverable errors while training. 

3. Deep reinforcement learning for adaptive task allocation in 
robotic construction 

3.1. Autonomous robots in construction 

Globally, the construction sector is considered a less digitized and 
automated industry than others and its labor productivity has stagnated 
accordingly [3]. Robotic automation, whereby autonomy is achieved 
partially or fully using robots, has been considered as a solution to 

address the challenge above [23]. Automation and robotics types in 
construction can be categorized into four general groups: (1) off-site 
prefabricated systems, (2) on-site automated and robotic systems, (3) 
drones and autonomous vehicles, and (4) exoskeletons [23]. In this 
paper, we focused on the second group, “on-site automated and robotic 
systems.” Within this category are various definitions for the robot’s 
levels of autonomy (LoA), which, according to the Society of Automotive 
Engineers (SAE), range from 0 (fully non-autonomous) to 5 (fully 
autonomous). Our research is focused on LoA 4 wherein a robot can 
autonomously perceive their surrounding environments and adaptively 
allocate tasks under pre-defined site conditions [24]. When this level of 
autonomy is reached, a robot can perform diverse construction tasks in 
unstructured and evolving environments. Our ultimate goal for future 
work is to achieve LoA 5 wherein the robot can operate fully autono
mously beyond human-level performance even in a completely new 
environment. 

Bock et al published series of handbooks in construction robotics 
which focuses on the implementation of automation and robot tech
nology to renew the construction industry. They academically organized 
and compiled knowledge in the fields of 1) robot-oriented design and 
management [24], 2) robotic industrialization [25], 3) construction 
robots [26], 4) site automation [27], and 5) ambient integrated robotics 
[28]. Gharbia et al. reviewed papers on autonomous robot technology 
for on-site building construction [29]. In their review, they noted that 
autonomous robotics has recently become the most cited research area 
in robotic construction and, in particular, that this technology has been 
widely adopted in areas such as additive manufacturing [30], robotic 
assembly [8], automated concrete spraying [31], distributed robotic 
construction [32], and more. They concluded that autonomous robots 
help to reduce many manual processes, and therefore could address low 
productivity issues in construction. Melenbrink et al also reviewed the 
research trends of autonomous robots in construction in terms of three 
groups of tasks: site preparation (earthmoving and leveling), substruc
ture (anchoring and foundations), and superstructure (load-bearing el
ements, façade, plumbing, and wiring) [23]. They have highlighted the 
autonomous robot’s potential for helping with repetitive and dangerous 
tasks, which also helps to solve the shortage of skilled construction 
labor. However, they also noted limitations on current robots for 
achieving enough autonomy (i.e., levels 4 of LoA) in an unstructured 
environment. In other words, the current autonomous robot still re
quires human supervision when applied in an unstructured environment 
like construction. On the other hand, Goessens et al [33] and Latteur et 
al [34] suggested another autonomous robot concept —using a drone- 
based automated masonry construction method to build small-scale 
structures made out of the concrete precast element— and Petersen et 
al [35] suggested and tested the use of multiple, collective, and con
struction robots to build a small-scale structure made out of building 
blocks. In addition, Iturralde et al recently suggested a cable driven 
parallel robot for the installation of real-world curtain wall modules 
[36]. Their applications showed the high feasibility of using autono
mous robots to build real-scale structures without human supervision, 
but these demonstrations were also limited to well-structured 
environments. 

In a practical demonstration of adaptive robotics, Komatsu [37] and 
Volvo [38] developed an autonomous dump truck robot for material 
handlings in a construction site. Their robots uses a global positioning 
system, light detection and ranging, radio detection and ranging, and 
multiple sensors (e.g., load sensor and inertial measurement unit) to 
observe the environment and react accordingly when performing ma
terial handling tasks. Similarly, Brayman construction developed a rail 
gantry crane robot for automated rebar work [39], and INTSITE devel
oped an autonomous tower crane robot for automated material handling 
[40]. They combined multiple sensors, computer vision, machine 
learning to enable data-driven machine controls. In contrast, in the 
control of such an adaptive robot, the spiking neuron algorithm [41], 
fuzzy logic [42], and heuristic algorithms [43–45] have been applied in 
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previous studies. However, until now such robots have operated only in 
preprogrammed construction scenarios, and thus they may not yet be 
reliable enough to be used on a dynamic construction site. In short, 
current autonomous robots demonstrate highly promising potential for 
enhancing project performance in well-structured repetitive task and/or 
simply programmed construction scenarios. However, to accomplish 
more complicated tasks and to achieve more benefits from autonomous 
robots in a dynamic construction site, robots should be adaptive to the 
environment. 

3.2. Potential of DRL for adaptive task allocation in construction 

Deep reinforcement learning (DRL) is an application of deep neural 
networks which can be used to better approximate functions in RL for 
more accurate and consistent learning convergence [46]. The deep 
neural network can be used to approximate any of the following com
ponents of RL: value function v̂(s;w), policy π(a|s;w), and model (i.e., 
state transition function and reward function) [14]. The value function 
is a function of states and/or actions that represent how good each state, 
or state-action pair, is. From data about the agent’s state and the envi
ronment, the policy dictates actions for the agent to take. The state 
transition function takes the current state and returns to the next state in 
response to an event. The reward function determines rewards for ac
tions. Specifically, the function uses parameters w, as a weight in deep 
neural networks, and its learning consists of finding the right w by 
iteratively adjusting those w along gradients that promise less error 
[15]. The deep neural networks enable RL to create better representa
tions (e.g., features), even when the state space or action space are too 
large (i.e., high-dimensional) to be completely known [47]. DRL has 
achieved success in solving difficult problems (e.g., autonomous vehi
cles) which were very challenging when approached using classical RL 
methods [48–50]. In particular, DRL has proven effective for addressing 
robot control problems such as locomotion [51], grasping [52], 
manipulation [53], and imitation [54]. Moreover, other researchers 
have noted the potential DRL holds for task allocation problem in a shop 
floor environment [55]. As the success of these other applications in
dicates, the DRL algorithm may be a good alternative for an adaptive 
task allocation method in robotic construction. 

On the other hand, while a DRL model with well-designed rewards 
can adapt well to a certain static environment, even a well-trained DRL 
model may not adapt to a dynamic environment because such a model 
may be overfitted to a specific environment [4]. In general, a con
struction project consists of different, complex processes which involve 
temporary alliances with various stakeholders [56,57], some of which 
can introduce conditions that the agent interprets as stochastic. For 
example, from the agent’s point of view, movement patterns of workers 
in a construction site that follow a certain probability distribution or 
randomness can be perceived as stochastic because the agent cannot 
precisely predict their patterns. In an RL domain, if there are stochastic 
conditions in an environment—which fluctuate randomly, regardless of 
the agent’s actions, the agent cannot uniquely determine the environ
ment’s next state [58–60]. For this reason, an agent’s actions must be 
tried many times in order to form a reliable estimate of its expected 
reward [15]. Learning in stochastic conditions has proven one of the 
most difficult RL problems because the trained policies do not neces
sarily converge to a single solution [61–63]. For these reasons, it has not 
been thoroughly determined whether a DRL agent can find an adaptive 
task allocation policy, and whether such a policy gives us reliable con
trol performance in a robotic construction environment which includes 
both dynamic and stochastic processes. There is thus a growing need for 
simulating such an environment and testing the potential of DRL for 
more adaptive task allocation methods in robotic construction. 

4. Digital twin-driven deep reinforcement learning for adaptive 
task allocation in robotic construction 

The objective of the study is to fill the aforementioned gap in the 
research by developing and testing a digital twin-driven DRL framework 
used to investigate DRL’s potential for adaptive task allocation in a ro
botic construction environment with dynamic and stochastic processes 
at play. 

4.1. Framework overview 

The digital twin-driven DRL framework consists of three components 
as shown in Fig. 1. This framework shows how project data is collected 
from the construction site and updated in the digital twin. The frame
work also explains how the DRL agent interacts with the digital twin to 
observe a new state and receive rewards for their actions. At its core, this 
framework utilizes the digital twin as a dynamic learning environment 
that observes overall site states in real-time. Such overall state obser
vation is necessary for the DRL agent to learn an adaptive task allocation 
policy, which in turn increases performance at the project level rather 
than at an individual robot’s level. For example, the agent may learn a 
policy that allocates tasks by comprehensively considering the state of 
other robots, workers, and heavy equipment. Moreover, this type of 
learning framework is new because the policy learned from the digital 
twin environment has a reduced simulation-to-reality gap (i.e., a 
discrepancy between simulated results and reality) which enables more 
realistic (i.e., practically applicable to real-world problem) policy 
learning. 

The IoT sensors attached to physical assets collect real-time sensor 
data (e.g., locations and properties of materials, and locations of robots) 
from a construction site (Fig. 1-(a)) and transmit the data to the digital 
twin (Fig. 1-(b)). Then, “as-is” building information modeling (BIM) can 
be updated based on “as-designed” BIM and IoT sensor data collected 
from the site. A DRL agent can interact with the dynamic digital twin 
environment and test their actions in different ‘what-if’ scenarios (Fig. 1- 
(c)). The DRL agent is a centralized single agent and can govern all ro
bots with only one policy network. The agent earns positive or negative 
rewards for its task allocations (e.g., brick loading and assembly 
sequence) in response to states observed and reported by the digital twin 
and updates the parameters of the policy network accordingly. If the 
agent’s behavior improves the project’s performance, it receives positive 
rewards and vice versa. As a result, the agent can find an adaptive task 
allocation policy that increases the overall project performance by 
maximizing average rewards per episode in response to the robotic 
construction environment. 

4.2. Deep reinforcement learning via proximal policy optimization 

In order to learn adaptive task allocation policy effectively, an 
appropriate deep reinforcement learning algorithm should be selected. 
While DRL algorithms fall into a variety of categories, the main ap
proaches have used value-function-based algorithms such as deep Q- 
learning [64]. However, Q-learning can only be applied to solve prob
lems with discrete action spaces (i.e., only a finite and discrete number 
of action sets) [22] and it is not widely used to learn stochastic policies, 
which would be useful in dynamic construction environments [65]. 
Since construction robots may be operated in either discrete or contin
uous action space (i.e., infinite and continuous number of action set) or 
in an environment which needs stochastic policies in the future, we used 
proximal policy optimization (PPO) in this paper—a state-of-the-art 
policy gradient-based RL algorithm. PPO is designed for use both in 
discrete and continuous action spaces [66], and showed better overall 
performance than other policy gradient algorithms such as A2C and 
ACER [20]. However, we do not claim that PPO is the only solution for 
adaptive task allocation or that it performs better than value-function 
based algorithms. 
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4.2.1. Deep neural network for PPO 
We used the PPO algorithm for policy learning and applied a deep 

neural network (DNN) for more stable learning in continuous and/or 
high-dimensional states (e.g., truck location, truck speed, and assembly 
progress). Furthermore, when RL is applied in future real-world con
struction sites, features should be extracted directly from raw data. In 
these cases, DNN will improve feature extraction. A digital twin repre
sents overall site conditions such as material delivery status in a stock
yard, locations of workers and equipment, and construction task 
progress (e.g., how many and which bricks are assembled). Such infor
mation (features) can be collected by virtual sensors (e.g., computer 
vision, ray-casting) (Fig. 2) or manually in the digital twin and pre
processed to be loaded as input state variables into the network. 

The DNN model consists of n hidden layers (each layer may consist of 
i, j units respectively). These variables can be changed according to the 
complexity of the digital twin environment and/or size of the state and 
action space of robots (Fig. 3). Rectified linear unit (ReLU) layers are 
used as the activation layer between each layer to account for nonline
arity. In the final activation stage, the actions of each robot are revealed 
as output given site states. The number of output units will depend on 
the number of robots governed by the DNN model. The resultant sto
chastic policy is passed back to the digital twin, where it probabilisti
cally determines robots’ actions and creates new states. Data received by 
the agent in the form of a positive or negative reward based on their 
actions is also passed back to the twin, which updates the weight of the 
network accordingly to reinforce and/or discourage such actions. 

4.2.2. Reward functions 
In this paper, the goal of our DRL algorithm was to find a task allo

cation policy adaptive to a dynamic robotic construction environment 
that includes stochastic processes. The policy aims for robot behaviors 
which increase overall project performance given site conditions. The 
policy aims for robot behaviors that increase the overall project per
formance given site conditions. The performance evaluation metrics in a 
construction project can include “time,” “cost,” “safety,” “quality,” and 
even “sustainability.” Effectively managing these performance metrics 
throughout the project lifecycle has a direct impact on the success or 
failure of the entire project [67]. These metrics should be reflected in the 
reward function so that the DRL agent can increase project performance 
by maximizing the cumulative reward. In this paper, we used ‘time’ as a 
metric of performance because it is one of the most important perfor
mance indicators ensuring timely completion of the project [68], and 
can be easily calculated and converted into a reward. Crucially, both 
local (short-term) and global (long-term) performance are reflected in 
the reward function; local performance evaluates from the perspective 
of a robot, while global performance does so at the overall project level. 
In general, local performance is evaluated at every iteration according to 
the agent’s behavior, and global performance is evaluated at the end of 
one learning episode. The reason why both short- and long-term rewards 
are needed here is to obtain both stable learning and improved project 
performance in a robotic construction environment. Through short-term 
rewards, the agent can stably learn the adaptive policy for each task 
while long-term rewards, which are normally bigger than short-term 
rewards, ensure that the agent is learning in accordance with the long- 

Fig. 1. Digital twin-driven DRL framework.  

Fig. 2. Information collection based on virtual sensors in the digital twin.  
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term project goal. Accordingly, the DRL agent receives a short-term 
reward for the agent’s performance at each learning iteration (e.g., the 
time required for a brick assembly) and a long-term reward for the 
project’s performance at the completion of one project episode (e.g., 
total construction time). For example, if robots have to assemble fifty 
bricks to complete one bridge, an agent will receive a small short-term 
reward for each brick assembled and one larger long-term reward 
when they finish assembling all fifty bricks. 

rtotal =
(∑

rshort + rlong

)
(5)  

where rlocal is a short-term reward, provided for each iteration (action), 
while rlong is a long-term, one time reward that is provided when a 
learning episode ends. 

5. Case Study: Experiments and results 

To test the proposed digital twin-driven DRL framework for adaptive 
task allocation policy learning in a robotic construction environment, 
we conducted a case study with a hypothetical but realistic project. This 
case study has three steps: input modeling, DRL agent training, and 
performance comparison between the DRL and rule-based model. The 
first step is input modeling, a process that generates hypothetical sensor 
data in order to create a digital twin environment that includes dynamic 
and stochastic processes (Fig. 4-(a)). In other words, input modeling 
replaces the process of collecting data from real-world assets with IoT 
sensors. Clearly, IoT sensor data ascribed to physical assets are funda
mental requirements for the creation of a digital twin, but because such 
a technique has not yet been implemented, we created hypothetical 
sensor data that fed into our digital twin. The case project was designed 
to create different site conditions by changing the simulation model 
parameters. For example, we can control the average number of workers 
moving around the site and the assembly speed of robots in the case 

project. Then the case project is fed into the digital twin so that we can 
simulate changing site conditions and use it for DRL learning. The model 
parameters represent dynamic and stochastic processes in robotic con
struction, using appropriate probability distributions. In the second step, 
the DRL agent was trained in the digital twin to find an adaptive task 
allocation policy within the preset parameter ranges, and the stability of 
DRL policy training was tested by checking the learning curve for two RL 
indicators (i.e., cumulative reward and episode time) (Fig. 4-(b)). In the 
last step, we tested the task allocation performance of the trained policy 
within and outside of the preset parameter ranges. In other words, we 
created a testing environment that includes both the environment the 
agent experienced during training and another, unfamiliar, environment 
to measure the policy performance across both cases (Fig. 4-(c)). Then, 
we compared the task allocation performance of the DRL model to that 
of a rule-based model that was designed to take action based on a pre
defined task allocation rule. For example, we can make a rule to trans
port and assemble bricks in the order the bricks arrive on a first-come, 
first-serve basis. Such a rule-based model cannot adapt its behaviors 
based on the environment because its task allocation behavior remains 
unchanged throughout the simulation regardless of environmental 
changes. Therefore, by comparing the task allocation performance of the 
rule-based model with that of the DRL model, it is possible to evaluate 
the adaptivity of the DRL model to a robotic construction environment 
which includes dynamic and stochastic processes. 

5.1. Case project 

To create dynamic and stochastic site conditions in the digital twin 
environment, we created a simple but realistic case project in which 
virtual industrial robots load and assemble prefabricated concrete bricks 
to construct a small-scale mock-up bridge. The project was designed to 
mimic the actual dynamic robotic construction process in bridge con
struction [69–72]. We tried to simplify this case to better understand 

Fig. 3. Deep neural network architecture for robot control learning in digital twin.  

Fig. 4. Overall process of case study.  
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and explain the agent’s behaviors while maintaining realism; if the case 
is too complicated, it becomes difficult to explain the observed behav
iors. The case project proceeded in 5 steps: (1) prefabricated inter
locking bricks were transported from the factory to the construction site 
and stored in the stockyard; (2) one loading robot loaded bricks onto a 
truck; (3) the truck delivered them from the stockyard to the assembly 
location within construction site; (4) two assembly robots assembled 
them to construct a small mock-up bridge; (5) the truck was returned to 
the stockyard; (Fig. 5). The bridge consisted of a total of 49 bricks of 4 
different types (A, B, C, and D) as shown in Fig. 5. In this case project, 
our testing scope was focused on commercialized industrial robots for 
easy and intuitive demonstration. Industrial robot may not universally 
applicable to all construction work, but it can sufficiently demonstrate 
the necessary task allocation policy in the scenario of this case project. 
Also, industrial robots were used as an example, but the digital twin 
framework and DRL algorithm presented in this paper can be applied to 
any type of construction robot (e.g., transportation robots, inspection 
robots, and autonomous heavy equipment) for task allocations. 

It was assumed that the distance between the stockyard and the 
bridge site was 100 m, that it takes 10 s to load and unload a brick from 
the truck, and that the truck can carry up to 4 bricks at a time. When the 
truck arrives at the stockyard or bridge assembly site, it stops to be 
loaded and unloaded, and waits or returns (Fig. 5-(1) and Fig. 5-(3)). The 
bricks required assembly according to the prescribed installation 
guidelines (e.g., The first brick in the middle line of the bridge should 
start with brick type B. If a brick that did not meet the guideline was 
delivered, its assembly could not proceed, and consequently, construc
tion completion was delayed. 

5.2. Input modeling to reflect realistic robotic construction challenges 

We defined three simulation model parameters to represent dynamic 
and stochastic construction processes in input modeling process, namely 
P1: brick arrival rate (number of arrival/s); P2: average truck speed 
(m/s); and P3: assembly rate (number of assembly/s). P1 and P3 are the 
rate (λ) of the Poisson process, which counts the expected number of 
events per unit of time. The Poisson process is widely used to represent 
arrival rate when an event occurs that is independent from preceding 
events [73–75]. The assembly rate (P3) can be treated in the same 
manner as the arrival rate (P1), assuming that new bricks arrive when 
the previous assembly step is completed. P2 is the average speed at 

which the materials handling truck travels between the stockyard and 
the assembly site. These three parameters represent significant chal
lenges in robotic construction [8,69–72]. Specifically, P1 represents a 
logistics challenge, which changes the availability of bricks at the 
stockyard. P2 represents an on-site material transportation challenge 
and is affected by site layout, the number of workers, and obstacles. P3 
represents an on-site robotic assembly (e.g., bolt and nut insertion, 
fixing, and screwing) challenge, which controls the brick assembly rate 
of two assembly robots. These three parameters can be used to represent 
a realistic robotic construction environment that includes dynamic and 
stochastic processes. 

Such a realistic environment is necessary to ensure DRL agent 
training; by manipulating these three parameters, we can generate the 
input data required to simulate a realistic environment in the digital 
twin. The above parameters were changed following either Poisson 
distribution (P1 and P3) or random distribution (P2) in preset training 
ranges (0.05 < P1 < 0.09 [1/s], 5<P2 < 9 [m/s], 0.018 < P3 < 0.032 
[1/s]), thereby allowing us to train the DRL agent in a more realistic 
environment. Ideally, the preset interval should be made using real- 
world datasets such as actual brick arrival rate, allowable truck speed 
at a real site, and brick assembly rates in practice. Unfortunately, robotic 
construction has not yet compiled such a universal dataset. Therefore, 
we had to subjectively set the training ranges, which we did to reflect 
less idle time for robots (loader robot and assembly robots). It should be 
noted that there is no claim that such training ranges are the only 
allowable ranges for this experiment. However, we did set these ranges 
in a way which we believe optimizes the realism of the simulated 
environment. 

5.3. DRL agent training 

The realism of the digital twin environment created through the 
aforementioned input modeling process better enables us to train a DRL 
agent to find an adaptive control policy. For each simulation iteration, 
the DRL agent takes actions which govern each robot according to given 
site states (i.e., brick availability, truck’s status, and assembly status). 
When directing the loading robot, the agent decides which types of 
bricks (A to D) and how many (1 to 4) to load on the truck. For the 
assembly robots, the agent decides in what order to assemble the bricks 
delivered via the truck and whether to send the truck back to the 
stockyard or to wait (Fig. 6-(a)); the truck is designed to deliver bricks by 

Fig. 5. Case project overview.  
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reciprocating between the stockyard and the bridge assembly site 
without being controlled by the agent. The DRL agent takes actions for 
all robots at every iteration, but in the simulation environment, if the 
truck is near the stockyard, it only activates the loading robot. Likewise, 
if the truck is near the bridge assembly site the DRL agent only activates 
assembly robots. A reward for the agent’s behavior is returned only 
based on activated robots’ behaviors. Meanwhile, the agent is rewarded 
for their actions according to the robots’ local performance (the time 
required for a brick assembly) and global project performance (bridge 
construction time), and this feedback, in turn, updates the policy 
network (Fig. 6-(b)). The hyperparameters used to train the PPO-based 
DRL model are shown in Table 1. Hyperparameters were set by refer
ring to values that were optimized and used in previous robotics 
research in OpenAI [20]. 

The learning performance of the DRL model was evaluated using two 
RL indicators: cumulative reward and episode time [76–78]. Cumulative 
reward per episode, taken over the entire training period, measures 
whether the reward increases as the episode increases— that is, whether 
the policy is being updated adaptively for the environment. It can also 
evaluate whether the plot converges stably. As episode time measures 
the time it takes to complete an episode (i.e., bridge construction), it 
measures the global performance of the policy over the entire training 
period. The shorter the construction time, the higher the performance, 
so the smaller the episode time, the higher the performance. 

The result of the cumulative reward plot fluctuates slightly in the 
beginning but stabilizes and begins increasing after around 1,000 iter
ations and then converges after 30,000 iterations (Fig. 7-(a)). This 

indicates that the DRL agent is not stably adapting to the environment in 
the beginning, but consistently found a way to increase the reward after 
1,000 iterations, and finally found an optimal policy in the environment, 
which includes dynamic and stochastic conditions, at around 30,000 
iterations. On the other hand, episode time per episode decreases after 
around 1,000 iterations (Fig. 7-(b)), indicating that an increase in 
reward leads to an increase in performance. Therefore, we may conclude 
that the policy at 30,000 iterations, where the cumulative reward value 
is at its maximum, is the optimal policy. If the environment changes, it 
may be necessary to tune the hyperparameters to find an updated 
optimal policy. The optimal policy composed of the weight of the policy 
network can then be extracted and used for testing robot control 
performance. 

5.4. Adaptivity test of DRL model 

We tested the trained DRL model’s adaptive control performance in 
the testing environment. Such an environment displays a wider range of 
parameter change than those used for the training ranges (0.01 < P1 <
0.14 [1/s], 1<P2 < 14 [m/s], 0.004 < P3 < 0.05 [1/s]). Evaluating the 
model trained using preset training ranges for its behavior outside said 
training ranges would allow us to assess the adaptivity of the trained 
model to a completely new environment (i.e., never experienced envi
ronment while training). Only one parameter was changed at a time, and 
the remaining parameters were fixed at their median values (P1: 0.075 
[1/s], P2: 7.5 [m/s], and P3: 0.027 [1/s]); this isolated change allowed us 
to better understand the adaptive behavior for each testing environ
ment. P1 and P3 changed following Poisson distribution, and P2 
changed following the random distribution. The DRL model, which was 
trained using a training range, and the rule-based model were each 
inserted into the aforementioned testing environment to test their be
haviors, and their global performance, indicated by total bridge con
struction time, was compared. A total of three rules are assumed here. 
First, the loading robot loads bricks onto the truck in the order they first 
arrived. Second, the truck loads only the maximum quantity of bricks 
the loading robot can carry at a moment, meaning the truck does not 
wait until additional bricks arrive. Third, the assembly robots construct 
the bricks in the order they were delivered in. Analysis demonstrated 
that the DRL model effectively adapted to three testing environment, 
showing better performance (i.e., less construction time) compared to 
the rule-based model (Table 2). Specifically, the results in the training 
range (i.e., grey shaded area in Fig.8-(a), (b), and (c)) show that the rule- 

Fig. 6. Interaction flow between DRL agent and digital twin for DRL training.  

Table 1 
Hyperparameters for the PPO-based DRL model.  

Hyper-Parameter Value 

Learning rate 0.0002 
Time horizon 256 
Generalized advantage estimator (λ) 0.95 
Batch size 256 
Update rate (τ) 0.005 
Discount factor (γ) 0.9 
Buffer size 100,000 
Max steps 40,000 
Number of hidden layers 2 (128 neurons per layer) 
Beta (β) 0.001 
Number of epochs 5 
Epsilon 0.2  
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based model took an average of about 6,356 s (standard deviation: 
1,346 s) to complete the bridge construction, while the DRL model took 
an average of about 3,920 s (standard deviation: 465) (Fig.8-(d)). The 
results in the untrained range (i.e., a range other than the training range) 
show that the rule-based model took an average of about 6,685 s 
(standard deviation: 1,235 s) to complete the bridge construction, while 
the PPO-based model took an average of about 3,988 s (standard devi
ation: 713 s) (Fig.8-(d)). These results indicate that the PPO model 
showed, overall, 36 % higher average performance (36 % reduced 
construction time) with 52 % reduced standard deviation (data points 
are clustered closely around the mean; more reliable), than the results of 
the rule-based model. Thus, the DRL model is more adaptable than the 
rule-based model to a robotic construction environment which includes 
dynamic and stochastic processes. Furthermore, because we found that 
DRL demonstrates higher performance than the rule-based model, even 
in new environment profiles with new parameters outside the training 
range, we may claim a generalization of DRL to an entirely new envi
ronment that was not made known to the model during training. In other 
words, the results confirmed that the agent learned adaptive control 
policy beyond the specifics of the training range. 

Fig. 8 Robot control performance in an environment profile which 
includes dynamic and stochastic conditions according to changes in (a) 
brick arrival rate, (b) truck speed, (c) assembly rate, and (d) perfor
mance comparison between rule-based model and DRL model both in 
trained range and untrained range. 

6. Discussion 

This study developed a digital twin-driven DRL framework to 

investigate DRL’s potential for adaptive task allocation at a robotic 
construction site. As the experiment demonstrated, the DRL agent can 
stably find an adaptive policy in a simulated environment and showed 
promising adaptive task allocation performance (reduced construction 
time on average by 36 % compared to a rule-based model) in three 
testing environments which included dynamic and stochastic condi
tions. One particularly noteworthy finding, which can be seen in the 
performance comparison plot (Fig. 8-(d)), is that the average construc
tion time decreased consistently across both the trained and untrained 
ranges when using the DRL model, while exhibiting a smaller value for 
the standard deviation in the trained range (465 s in training vs 713 s in 
testing). Here, standard deviation can be an indicator of the reliability of 
autonomous robot behavior for robots controlled using the DRL model. 
The discrepancy in standard deviation between the trained and un
trained ranges indicates that we should continuously update the training 
ranges to reflect realistic values so that behaviors of autonomous robots 
trained in the digital twin can continue adapting reliably even in reality. 
Since construction environments evolve over time as projects progress, 
an agent’s policy must be constantly updated according to its changing 
environment. From this point of view, the digital twin has great po
tential since the digital twin’s environment is constantly updated. In 
such an environment, agents can continuously update their policies 
through an online learning approach. 

The DRL agent was able to find an adaptive task allocation policy in a 
robotic construction environment which included dynamic and sto
chastic processes because we assumed that, since the digital twin pro
vided overall site conditions in near real-time, all states in the 
environment were fully observed. This complete observability helped 
our DRL agent quickly and stably find an adaptive policy even under 
dynamic and stochastic conditions. This result indicates that the digital 
twin can be a core component of DRL learning in environments that 
include difficult learning conditions (i.e., partially observable space, 
dynamic and stochastic conditions). With the aid of a digital twin, a 
robot can take actions toward improving global project performance (e. 
g., cost, time, quality, safety, and sustainability) by observing the overall 
states of a construction site rather than relying only on data or states it 
collects locally. This learning method can be effective in construction 
projects where global project performance is more important than the 
local performance of an individual robot. 

If robots can adapt to an environment that includes dynamic and 
stochastic site conditions without specific prior domain knowledge or 
instructions, they can accomplish a larger set of tasks in more complex 
and uncertain situations. This adaptivity is particularly important in 
construction because many different activities are carried out simulta
neously, with a high degree of uncertainty inherent in each process with 

Fig. 7. Learning curve for (a) cumulative reward and (b) episode time.  

Table 2 
Average construction time (ACT) comparison between Rule-based model and 
DRL model behaviors by simulation model parameters.  

Parameter ACT in Rule- 
based model behavior 
(s) 

ACT in DRL 
model behavior 
(s) 

Brick arrival rate (1/s) 6,952 4,071 
Truck speed (m /s) 5,974 4,100 
Assembly rate (1/s) 6,832 3,730 
Trained range 

(standard deviation for 840 
samples) 

6,356 
(1,346) 

3,920 
(465) 

Untrained range 
(standard deviation for 360 
samples) 

6,685 
(1,235) 

3,988 
(713)  
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significant dependencies. If the robots can take the best actions in 
consideration of dynamic and stochastic processes, they will be able to 
cope with such uncertainties and consequently improve the overall 
performance of the project. For example, assembly robots can adaptively 
change their assembly sequence or find alternative plans when the 
material delivery status is delayed by an unexpected accident, to avoid 
any future cost overrun or schedule delay. If a mobile robot predicts a 
potential safety accident risk, they might proactively change their 
moving speed and/or route directly to prevent such accidents. In short, 
robots can autonomously select the best behavioral strategy for suc
cessful project execution even in a dynamically changing construction 
site environment, and ultimately, fully automated construction (LoA 5) 
may become possible with the adaptivity. 

Although this study demonstrated the potential of the suggested 
framework for adaptive task allocation in the robotic construction 
environment, there are still several important “scalability” issues to 
consider. The issue with scale is that as the numbers and types of robots 
increases, the dimensions of state and action space increase exponen
tially, and consequently, the DRL agent has trouble finding the optimal 
policy. This issue is particularly serious in a construction project where a 
multiplicity of different types of robots conducting various activities 
must be controlled simultaneously. In this paper, for example, we 
focused on industrial robot task allocation as a case study but our 
approach can be applied to any type of robot. If the task of each robot 
can be parameterized and standardized, any type of task allocation 
problem can be solved with the same DRL approach. In this situation, we 
may use a multi-agent system (MAS), comprised of multiple interacting 
agents. These agents could be software agents, robots, machines, or even 
humans, and they might have a common goal to solve together and/or 
each have an individual goal. Each agent has its own policy, which al
lows more freedom from the scalability issue than does a single-agent 
system. The introduction of MAS may allow us to find fully autono
mous, adaptive, and even collaborative control policies for multiple 
robots in robotic construction. 

Although this study demonstrated the potential of DRL for adaptive 
robot control, there are several important issues to consider. First, the 
validation of the proposed framework was performed only in a hypo
thetical case project. There has as of yet been no implementation of a 
real-world synchronized digital twin with IoT sensors. Though this hy
pothetical project serves the objective of this research in testing the 
potential of digital twin-driven DRL for robot control, it is necessary to 
validate it with a real-world project in the future in order to confirm 
real-world applicability. Second, in this study, we selected a construc
tion scenario in which humans and robots did not interact directly. 
However, if humans are involved or present in which the robots are 
embedded, various postures and actions must be simulated by modeling 
a person in a digital twin space. Unlike robots, humans can exhibit 
various behaviors depending on their mental and physical states. 
Therefore, detailed human modeling may be required through connec
tion with ergonomics. Third, the DNN model used in this paper is 
composed of a relatively shallow network with four hidden layers for 
faster convergence. While learning efficiency increases with shallow 
networks, they are difficult to apply to complex real-world robot control 
problems (e.g., robot control in sparse reward, high noise, high di
mensions of state and action space, and partially observable environ
ment). Therefore, to improve the generalizability of the model, the 
architecture should be modified in favor of a slightly deeper network, 
adjusting to the control problems. Lastly, also, in future research, our 
DRL based task allocation approach may be linked to well defined or 
standardized robotic construction processes for automated robot con
trols. However, each construction project has unique characteristics (e. 
g., site conditions, construction methods, and tasks) and projects evolve 
as they progress. Moreover, each construction project may need unique 
robot controls rather than simple task allocations, and there is no 
standardized/parameterized robotic construction process or in
structions yet, which makes many uncertain situations for a robot. These 

uncertainties pose severe obstacles to applying DRL in the construction 
domain. For this reason, even if the digital twin provides a realistic 
representation in real-time and is used as a learning environment for 
DRL, there will be a simulation-to-reality gap because, as long as the 
agent cannot precisely predict the future, the agent always learns a 
policy from a previous environment. In order to reduce the simulation- 
to-reality gap and use DRL in practice, model generalization techniques 
(e.g., domain randomization or domain adaptation methods) should be 
applied in RL. In addition, the digital twin must be able to simulate 
diverse scenarios for the generalizability of the RL learning. For 
example, different worker movement patterns based on historical 
datasets or future construction processes based on 4D BIM should be 
created in the digital twin environment that the RL agent interacts with. 
The RL policy trained in these diverse scenarios may have more gener
alizability in real-world applications. 

7. Conclusion 

We developed a digital twin-driven DRL framework to investigate 
DRL’s potential for adaptive task allocation policy formation in robotic 
construction applications. A digital twin can capture real-world site 
conditions in near real-time and simulate dynamic and stochastic site 
conditions for a DRL agent to interact with. The DRL agent is then able to 
learn an adaptive task allocation policy to increase project performance 
at a global level given overall state observations. We tested the sug
gested framework in a case project experiment. The results indicated 
that the DRL agent can stably find an adaptive policy in a simulated 
environment. Additionally, we found that the DRL’s control behavior 
resulted in a 36 % construction time decrease compared to the rule- 
based model in a robotic construction environment that included dy
namic and stochastic processes. This finding indicates that the DRL 
model is more adaptable to an environment than the rule-based model. 
Therefore, the primary contribution of this paper is to demonstrate the 
potential of DRL for adaptive task allocation in a robotic construction 
environment. Such an adaptive allocation method can help robots make 
optimal decisions through considering past, present, and future site 
conditions— ultimately enabling robots to cope with uncertainties and 
to boost project performance. 
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