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Abstract. The anti-plane strain problems of an edge cracked elastic plate under 1) uniform surface displacement
load and 2) surface line toads are solved using conformal mapping techniques. The solutions yield stress. strain
and displacement distributions and stress intensity factors in the plate.

The line load solutions can be used as Green's functions to obtain further solutions for more general surface
loading conditions. As an application, we calculate the strain field on the upper plate surface due to arbitrarily imposed
tractions on the lower plate surface, using a superposition technique and the Green's functions just mentioned.

In addition. the stress intensity factors for two edge cracks with arbitrary length ratios and distance of
separation have been worked out.

1. Introduction

A number of anti-plane crack problems have been solved (sec, e.g., Tada et al. [1]; Paris and
Sih[2]; Tse et al. [3]). This paper presents the full elastic solution for two edge crack problems
using analytic function theory and conformal mapping techniques. The edge cracked elastic
plate is subjected to surface loading, with the plate of thickness H and edge crack length “a”,
and loading configurations as shown in Figs. 1 and 2. In the first case (Fig. 1) the loading
is imposed by uniform (with opposite signs on either side of the crack) displacement.
Multiple conformal mappings transform this geometry into a rectangle with two edges
toaded by equal and opposite displacements, and the remaining edges of the rectangle are
traction free. In the second case (Fig. 2) the loading is imposed by two line loads (again with
opposite signs on either side of the crack) at any arbitrary distance from the crack. Multiple
conformal mappings transform this geometry into a half space with a traction free surface
except for two equal and opposite line loads. For both problems, the elastic solution on the
mapped planes are readily available. This method also generates the solution for the problem
when the line loads are imposed directly on the crack faces.

The solution for the second case is particularly useful as it can be used as Green’s functions
to generalize the solution to that for any arbitrary distribution of surface tractions. As an
example, we use this technique to calculate the surface strain due to distributions of basal
tractions obtained from an analysis by Li and Rice [4] of an edge cracked elastic plate
mechanically coupled to a viscoelastic foundation. In addition, the stress intensity factor for
a pair of edge cracks can be worked out based on the full clastic solutions for the single edge
crack problem, and is also presented in this paper.

The boundary value problems described above originated from analyses of surface
deformations at transform tectonic plate margins, but the solutions could be useful for other
applications such as analyzing structural plates with elongated surface flaws.
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Fig. I. Cross-sectional view of edge cracked plate loaded by uniform (with opposite signs on either side of
crack) displacement.
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tig. 2. Cross-sectional view of edge cracked plate loaded by line loads (with opposite signs on either side of
crack) at distance x, from the crack.

2. Case with uniform imposed displacement
Elasticity theory leads to the governing equation for the only non-vanishing displacems
u(x, y):

Viu = 0

subject to the “basal” loading

uy/2 forx > 0
wx,y =0) =

—u,/2 forx < 0

where u, is an imposed relative displacement. The displacement and shear stres:
can be represented in terms of an analytic function ®(Z) of the complex variable Z
X+ iy

u = C Re[D(Z)]
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Fig. 3. Conformal mappings to transform the physical plane of an edge cracked infinitely long strip into a
half-space.

and
1, — i1, = GCO'(Z), 4)

where G is the shear modulus and C is a constant to be determined.

Our objective is to solve for @ satisfying all the boundary conditions as shown in Fig. 3a
and in (2), and using analytic function theory and standard conformal mapping tech-
niques. (Capital lettering has been used in the figures to show the mapping of corresponding
points on the physical and mapped planes). Figure 3b is a result of mapping the physical
(infinitely long) rectangular Z plane into the (upper half of the) IT (=p + ig) plane using
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Fig. 4. Conformal mapping to transform the half-space into a finite rectangular box.

the mapping function
I1 = tanh (xZ/2H). %)
In the [T-plane the crack DCB is still inside the upper half space. The next step is to fold

this out to become part of the surface of the half space. This is achieved by the mapping
function

A = /1 + IP*tan’(na/2H), (6)

where A = 1 + ip. In the A-plane (Fig. 3c) the imposed displacement boundary conditions
at the base of the plate in the physical plane are now mapped into the same conditions on
the two associated line segments ED and BH. To map the A-plane into a finite rectangular
box (Fig. 4), a somewhat complicated mapping function is needed in the form of

[1}

= F(k,, sin"' A)/F(k,, n/2), @)

where 2 = ¢ + in, k, = sin (na/2H). The function F is the elliptic integral of the first
kind defined by

- do
Fho) = [ s ®)

In the E plane the original physical domain is now mapped into a simple rectangle with
height given by F(k{, n/2)/F(k,, n/2), where k| = cos (na/2H), and length given by 2.
With the traction free boundary condition on two opposite horizontal sides, and the
imposed displacement u,/2 and — u,/2 on the remaining opposite vertical sides (Fig. 4) the |
solution for the displacement u in the E-plane is simply observed to be a linear function of
&. Hence

u@ = (/2)¢. )

Comparison of (9) with (3) reveals that the analytic function @ is simply E and the constant
C is u,/2. Using (3) and the mapping functions (5), (6) and (7), the displacement field in the
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plate can be written as

uy . F(k,, sin”'[Q)])
uz) = FRe—pr—

(10)

where Q(k) = \/ [1 + tanh® (nk/2H)/tan? (na/2H)).
The shear stresses in the body can be obtained using (4) and the mapping functions (%),
(6) and (7), and are given by

iG (uy/2) (n/2H)) sech (nZ/2H)

T, — T, = F(k,, n/2) sin (na/2H)Q(z) "

and the surface strain at y = H is then

(uy/2) (n/2H) (12)
F(k,, n/2) sin (na/2H) sinh (nx/2H)Q(x + iH)

7(x) =

The mode III stress intensity factor can be derived using (11) and by making use of the form
of the asymptotic crack tip field (e.g., Rice [5])

Ky = lim27(y — a)t,,. (13)
you

Hence,

G(uy/2) (n/2H)/2H
Ky = : . (14)
F(k,, /2)\/sin (ra/2H) cos (na/2H)

The above solutions can be shown (Lim [6]) to satisfy all the boundary conditions, as
required.

3. Case with line loads

The mapping functions (5) and (6) can be used again to map the physical plane shown in
Figs. 2 and 3a into the IT and A planes shown in Figs. 3b and 3c. For the present loading
conditions, the line loads are mapped inside the line segments ED and BH, which lie on the
otherwise traction free surface of the half space in the A-plane. The solution of line loads
acting on the surface of elastic half space is well known (one analogy is the solution for the
problem in hydrodynamics involving a source and a sink of equal strength placed at equal
distances on opposite sides of the origin). For the two line loads of magnitude P (force per
- unit length) acting at x = =+ x, in the present problem, the displacement field can be directly
wirtten in the A plane as

uA) = — L Re log|: (15)

A — Q)
nG J

A+ Q(x))
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Comparison between (15) and (3) reveals that the analytic function @ for this problem is

~ A - Q(x) 16
® = lOg[A+Q(x1):| 1o

and the constant C is — P/(nG).
Using (3), (5), (6) and (16), the displacement field in the plate can be written as

an

wZ)y = — E% Re log [Q(Z) — Q(xl)].

QZ) + Qx,)
The shear stresses in the body can be obtained from (4) and (16) and are given by

— P Q(x,) tanh (nZ/2H) sech’ (nZ/2H) 18
e =1 T 7 Yltanh® (Z2H) — tank® (nx, 2H)QZ) (18)

Similarly the surface (y = H) strain field can be written as

_ Q(x,) tanh (nx/2H) csch?(nx/2H) 19
) = GH [1 — tanh? (nx/2H) tanh? (nx, 2H)]Q(x + iH) ' (19)

The mode Il1 stress intensity factor can be derived using (13) and (18) from the stress
distribution along the crack line (x = 0). It is given by

P /2H tan (na/2H)
H sin (ma/2H)Q(x,)

Km = (20)

The stress intensity factor (20) is found to coincide with that given by Tada et al. [1] which
was obtained using asymptotic interpolation method. The above solutions can be shown to
satisfy all the boundary conditions (Lim [6]).

Note that the conformal mapping method used here is just as applicable for the problem
when the crack faces are loaded by line forces. Indeed the mapping would be exactly the
same, only that the line-forces are now applied in the line segment CD and CB instead of
DE and BA. Since all these line segments are on the surface of the half-plane in the mapped
A-plane, the solution procedure is identical to the one presented above. For crack face
loading at y = y,, the displacement field in the plate is

wz) = - L Relog n

Q(Z) — Q)
G

QZ) + Qy)
and the shear stresses in the plate are given by

o P Q(y,) tanh (nZ/2H) sech® (nZ/2H) )
x ~ % T 7 Hltank® (nZ2H) + tan’ (m, )2H)IQZ) (22)
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The mode III stress intensity factor is

P +J2H tan (na/2H)

Ky = H sin (na/2H)QGy,)’ ~

which coincides with that given by Tada et al. [1].

4. Application of line load solutions as Green’s functions

The line load solutions given in (17) to (20) above can be used as Green’s functions in order
to extend the solution to cases where the plate basal tractions are arbitrarily distributed. The
well known superposition method is applicable as the problem is linear, so that

o) = [ Gx, x)dP(x). (24)

In the general formulation (23), Q(x) can represent any of the deformation fields, G (x, x*)
is the appropriate Green’s function describing the quantity Q at x caused by a line load at
x’, and d 2P is the magnitude of the line load at x’ given by t(x") dx’, where 7(x’) is the basal
traction at x". As a specific application we use (19) as the Green’s function to calculate the
surface (y = H) strain due to distributions of basal traction (in the form of a shear stress
rate) shown in Fig. 5. These traction rate distributions 7(x) have been obtained from an
analysis by Li and Rice [4] of an edge cracked elastic plate coupled to a viscoelastic
foundation in connection with the analysis of surface deformation profiles at tectonic plate
boundaries. Using (19) and (24) the surface strain rate can be calculated from

. (e Q(x,) tanh (nx/2H) csch® (nx/2H)i(x,) dx,
N [1 — tanh? (nx/2H) tanh’® (nx, 2H)Q(x + iH)

(25)

as is shown in Fig. 6.

5. Double edge cracked elastic plate

The line load solutions for the case when the crack faces are loaded by line forces can be used
in conjunction with an alternative superposition technique to solve for the problem of a
double edge cracked plate under anti-plane loading. We demonstrate this procedure by
calculating the stress intensity factor of an elastic plate of thickness H with two adjacent
cracks of length “a” and ““b” separated a distance ““d”’ apart and is subjected to a remotely
applied load as shown in Fig. 7.

The approach here is to first treat the problem as an elastic plate containing a single edge
crack of length “a” loaded remotely by a load ¢. The solution to this problem is well-known
(see, e.g., Turcotte and Spence [7]). In order to simulate traction-free conditions along the
crack faces of crack “b”, tractions of equal magnitude and opposite signs will have to be
applied at the location of the second crack. These applied tractions will in turn induce
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Fig. 7. Cross-sectional view of double edge cracked plate loaded by remotely applied line force .
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Fig. 8. Stress intensity factors at crack tip “a” for double edge cracked plate loaded by remotely applied .
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Fig. 8. Continued.

tractions at the location of crack “a” which are obtained by making use of the superposition
method as given in (24) and using as Green’s function the solution for stresses as given by
(22). This alternating superposition technique is repeated until convergence of solution is
obtained.

Following a similar procedure, the stress intensity factor at the crack tip due to the applied
tractions can be obtained by superposition and using as Green’s function equation (23), and
is to be added to the stress intensity factor for the case of a single edge cracked plate loaded
by a remotely applied load.

The stress intensity factors for various crack size ratios have been calculated and are
shown in Fig. 8. It can be observed that the presence of a second crack ““b” reduces the stress
intensity factor at the first crack tip “a” for all crack size ratios. When crack “a” is of equal
or greater size than crack ““b”, this shielding effect is greatest at intermediate crack size “a”.
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Fig. 8. Continued.

Also, at very small and very large crack size “a”, the solution approaches that for a single
edge cracked plate (shown as dotted line b = 0 in Fig. 8). As expected, the interaction
between the two cracks is more pronounced the smaller the separation “d”’ between the two
adjacent cracks. This interaction becomes negligibly small as measured against the single
crack solution for any crack length ratios when d > H.

Acknowledgement

This work has been supported by a NASA grant to MIT. The authors would like to thank
J.R. Rice for useful discussions.



The stress field 155

References

1. H. Tada, P.C. Paris and G. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown,

PA (1973).

P.C. Paris and G.C.M. Sih, in Fracture Toughness Testing and Its Applications, ASTM STP 381 (1965).

. S. Tse, R. Dmowska and J.R. Rice, Bulletin of the Seismological Society of America 75, 3 (1985) 709-736.

V.C. Li and J.R. Rice, Journal of Geophysical Research 92 (1987) 11533-11551.

J.R. Rice, in Fracture, Vol. II, H. Liebowitz (ed.), Academic Press (1968).

. H.S. Lim, “Analysis of Elastic Crack Models under Anti-plane Loadings and their Applications to the Study
of Surface Deformation at Strike-slip Plate Boundaries, MIT MS thesis (1987).

7. D.L. Turcotte and D.A. Spence, Journal of Geophysical Research (1974) 4407-4412.
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Résumé. On résoud les problémes de dilatation antiplanaire dans une plaque élastique a fissure de bord soumise
a sollicitation uniforme de surface ou a sollicitation de surface alignées, en utilisant les techniques de représen-
tation conforme. Les solutions fornissent les distributions de contraintes, dilatations et déplacements, ainsi que
les facteurs d’intensité de contraintes, dans la plaque.

Les solutions relatives aux sollicitations alignées peuvent étre utilisées comme fonctions de Green pour obtenir
d’autres solutions convenant pour des conditions de sollicitations de la surface plus générales. A titre d’application,
on calcule le champ de déformation existant a la surface supérieure d’une plaque sousmise a des tractions
arbitraires sur la surface inférieure, en recourant a une technique de superposition et aux fonctions de Green
mentionnées.

En outre, on traite des facteurs d’intensité de contraintes pour deux fissures de bord dont le rapport entre les
longueurs et la distance qui les sépare sont arbitraires.



