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Abstract

This article presents a numerical study on the steady-state cracking in brittle matrix composites. While steady-state cracking underlies
the phenomenon of multiple cracking, an important mechanism to achieve tensile ductility in such materials, it is difficult to capture
experimentally. This paper provides a numerical approach to simulate steady-state cracking behavior in reinforced brittle matrix com-
posites. From computational results, the previously derived analytic condition of steady-state cracking is confirmed and steady-state
crack propagation can be digitally visualized.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In some composite systems when the applied ambient
stress exceeds the matrix cracking strength, a flat crack
can form after initiating from a defect site and extends infi-
nitely through the matrix. In this scenario, the crack open-
ing d and the ambient loading r1 remain constant and
bridging ligaments sustain and pass the load without rup-
turing and diminishing. This behavior is known as
steady-state cracking. Further loading causes crack initia-
tion from another defect site and subsequent flat crack
propagation occurs. Repeated formation of such steady-
state cracks results in multiple cracking and strain-harden-
ing of the composite. This deformation mechanism has
been observed experimentally in several reinforced brittle
matrix composites [1–3] and is important for the converting
brittle materials into ductile materials in tension.

Steady-state cracking in the present study is defined as
crack extension under constant ambient load independent
of crack length. Specifically, the crack propagates at con-
stant crack width, i.e. in a flat crack mode, Fig. 1(a), with
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crack flanks bridged by fibers. Under this circumstance,
the crack tip advances without knowing any difference
in its surrounding environment, including the loading,
crack shape, stress and strain fields, and boundary condi-
tions. Conversely, extension of a Griffith type crack,
Fig. 1(b), is accompanied by a continuous drop in ambi-
ent load and a widening in crack opening. (We define here
a ‘‘Griffith type crack’’ as essentially a Griffith crack
which has part of the crack opening profile near the crack
tip region modified by the presence of cohesive traction
due to matrix retention and/or fiber bridging, but other-
wise the same as a standard Griffith crack.) Although
steady-state cracking theory has been established for
many years, it has not yet been observed experimentally
due to test difficulties. In this study, a numerical approach
will be employed to simulate steady-state crack propaga-
tion and to verify the validity of the steady-state cracking
theory.

In the following sections, the theoretical background of
steady-state cracking is introduced, and the cohesive trac-
tion model which was employed in this study to calculate
the cracking behavior is shown in Section 3. Sections 4
and 5 display the results and discussion for the Griffith type
and the steady-state crack propagation, respectively.
Section 6 gives the conclusion.
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Fig. 1. (a) Steady-state cracking with constant ambient load rss and
constant crack opening dss (flat crack); and (b) Griffith crack (an oval
shape crack) with a descending ambient load and a widened crack
opening.
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2. Condition for steady-state cracking

The theoretical foundation of multiple cracking was first
studied by Aveston et al. [4] who analyzed this phenome-
non for an aligned continuous fiber reinforced brittle
matrix composite. Later, Marshall and Cox [5] employed
the J-integral method to calculate steady-state cracking
stress rss and proposed a more general solution for the con-
dition of steady-state cracking:

rssdss �
Z dss

0

rðdÞdd ¼ J tip ð1Þ

where Jtip is the crack tip toughness and r(d) is the spring
law of the material elements bridging the crack surfaces
(Fig. 2). Eq. (1) can also be derived based on the energy
balance concept and expresses the energy exchange per unit
crack advance during steady-state cracking. The left hand
side of Eq. (1) may be interpreted as the net energy input
by external work (first term) less the energy consumed by
the bridging elements which open from 0 to dss (second
term), and represents the complementary energy of the
r(d) curve (shaded area in Fig. 2). Hence, Eq. (1) dictates
that the net energy available for driving the crack must
be equal to the crack tip toughness during steady-state
crack extension. This is an alternative definition of stea-
Fig. 2. A bridging law which satisfies steady-state cracking condition.
dy-state cracking in the present context. That is, the net en-
ergy available to drive the crack tip propagation is
invariant with the crack length.

Recognizing that the left hand side of Eq. (1) reaches a
maximum, J 0b, steady-state cracking is guaranteed when

J 0b � r0d0 �
Z d0

0

rðdÞdd P J tip ð2Þ

where J 0b is the maximum complementary energy defined as
the hatched area in Fig. 2.

Eq. (2) has been recognized as an important criterion in
designing reinforced brittle matrix composites. Li et al. uti-
lized this criterion in conjunction with a r(d) formulated
for short randomly distributed fibers [6] in the successful
development of engineered cementitious composite (ECC)
with 5% tensile strain capacity [7].

3. Cohesive traction model with two interface types

To simulate the behavior of crack extension, the cohe-
sive traction model provides an effective approach and rel-
atively precise solution [8]. In this study, the cohesive
traction model was realized by employing interface element
with the user-defined cohesive traction law in the crack
plane. The simulations were performed using a commercial
finite element analysis (FEA) software DIANA. The inter-
face element with the user-defined cohesive traction law is a
standard element formulation in DIANA.

Fig. 3 gives the details of the model. A two dimen-
sional plate with 160 mm in width and 100.5 mm in length
is modeled using the finite element method. Due to x- and
y-axis symmetries, only a quarter of the plate is modeled.
The boundary conditions are fixed in the y direction for
the bottom line and fixed in the x direction for the left
sideline. The plate is subject to an ambient uniaxial tensile
load r1. The matrix element is assumed to act linear-elas-
tically. Interface elements are used to simulate the devel-
oping crack and are assigned the user-defined cohesive
traction law as material property. Except for those ele-
ments representing a pre-existing crack, they are assumed
to be linear elastic until a predefined tensile strength ft is
reached. After that, the cohesive behavior follows the
imposed cohesive traction law. Specifically, two sets of
interface elements are deliberately employed as shown in
Fig. 3. Interface 1 and 2 can be assigned different opera-
tive traction behavior for different investigation purposes.
For example, a zero bridging in interface 1 and a matrix
retention law in interface 2 represents a traction-free cen-
ter through-crack in a two dimensional plate. Matrix
retention is used to represent the break-down tension-soft-
ening behavior of the matrix (see Fig. 4). As another
example, interface 1 and 2 can be assigned a bridging
law and a total cohesive traction curve, respectively. In
this scenario, interface 1 represents a cracked interface
but still with cohesive traction associated with bridging
only (e.g. fiber) and interface 2 is an (as yet) uncracked
interface with assigned cohesive traction combining both



Fig. 3. Cohesive traction model with two interface types.
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Fig. 4. Bridging curve and matrix retention with J 0b < J tip.
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matrix retention and fiber bridging action. Interface 2
effectively becomes part of interface 1 when matrix reten-
tion is exhausted as the crack opening increases. The phi-
losophy behind this approach reflects the recognition that
the matrix breakdown and the bridging (e.g. fiber) are two
separate and distinct physical processes. This is consistent
with the bridged crack concept first suggested by Marshall
and Cox [5].

In the following sections, several scenarios (i.e. Griffith
type cracking and steady-state crack propagation) were
examined by incorporating this cohesive traction model.

4. Simulation of Griffith type cracking

Base on the theory embodied in Eq. (2), if the condition
of steady-state cracking is not satisfied, a Griffith type
crack, with enlarging crack opening d as a function of
crack length, should result. For the Griffith type crack,
the near tip crack opening profile is not described by the
typically elliptical shape as in the case of the classical Grif-
fith crack, due to cohesive traction which reduces the open-
ing. Fig. 4 shows a bridging law and a matrix retention law
in which J 0bð0:5 J=m2Þ is less than Jtip (5 J/m2), so that Eq.
(2) is violated. The value of Jtip can be calculated from the
area under the matrix retention curve. The value of J 0b is
the area to the left of the bridging law up to the peak bridg-
ing stress.

Fig. 5 shows the computational results when the above
cohesive tractions are assigned to interface 1 and 2. The
computation was conducted by load control and an arch-
length method [9] was used as the solution method. The
arch-length method which is automatically implemented
in DIANA has the advantage of solving problems with
high nonlinearity which is likely to be the case in the pres-
ent study. As can be seen in Fig. 5(a), after the peak load, a
descending ambient stress r1 is accompanied by a contin-
uously increasing mid-crack opening dm (measured at the
center of the crack). Fig. 5(b) plots a quarter of the crack
opening profile after the peak load. By symmetry, an
enlarging oval shape crack forms with a descending r1.
The concave shape near the crack tip region (circular part
in Fig. 5(c)) is a result of matrix retention and bridging
traction. Fig. 5(c) shows dm versus crack length (L, mea-
sured in terms of the length of interface with d > 0) curve.
By plotting Ddm/DL (secant slope calculated from two
adjacent data points) versus L curve as shown in Fig
5(d), it is found that the change in mid-crack opening per
unit crack advance Ddm/DL approaches a constant (0.09)
which implies a continuously widening crack as the crack
tip extents. Continuously enlarging in crack opening causes
the exhausting of bridging, and therefore it has to be a
Griffith type crack.
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Fig. 5. Computational results of Griffith type cracking where cohesive tractions in Fig. 4 are applied to interface 1 and 2, respectively.
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Fig. 6. (a) Bridging law with substantial bridging strength; and (b) computational result of r1 � dm.
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It may be argued that the Griffith type cracking behav-
ior described above is a result of low bridging strength
(r0 = 1 MPa) compared to the matrix strength (ft =
5 MPa). However, another computation attempt shows
that even when the bridging strength (r0 = 6 MPa) is larger
than the matrix strength (ft = 5 MPa) as shown in Fig. 6(a),
crack propagation remains in a Griffith type mode. For this
case, J 0bð3 J=m2Þ is set to remain lower than Jtip (5 J/m2) so
that the steady-state criterion (Eq. (2)) is still violated.
Fig. 6(b) plots the computed ambient load versus the
mid-crack opening curve. Again, a continuously increasing
crack opening is observed beyond the peak load. At a cer-
tain point, the crack opening exceeds 10 lm, which indi-
cates the exhausting of the fiber bridging capacity
(Fig. 6(a)) and a traction free Griffith type crack results.

From the above analyses, it is concluded that no mater
how strong the fiber bridging is, a Griffith type crack will
form as long as Eq. (2) is violated, that is, when the com-
plementary energy J 0b is smaller than the matrix toughness
Jtip. In ductilizing brittle matrix composites, this result
reveals an important information that a composite with
strong bridging is not necessary a tough material. This
concept; however, has not been widely accepted by
researchers.
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5. Simulation of steady-state cracking

To demonstrate steady-state cracking, a bridging curve
with larger J 0b is assigned to interface 1. Fig. 7 shows the
matrix retention and bridging laws employed for this study.
In this case, J 0b is 12 J/m2 which is larger than Jtip (5 J/m2)
so that Eq. (2) is satisfied.

It has to be pointed out that direct calculation and sim-
ulation of steady-state cracking is difficult. Mathemati-
cally speaking, steady-state cracking represents infinite
Fig. 7. Bridging law with J 0b > J tip.
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Fig. 8. Computational results of steady-state cracking. Stage numbers represe
shown in (b). Mid-crack opening behavior is shown in (c) and (d).
solutions in terms of crack length for a given load. In
other words, infinite equilibrium states of different crack
length can be found at the steady-state cracking stress
(rss). However, it is impossible for a FEA program to find
more than one solution/equilibrium state. An alternate
way to simulate steady-state cracking is to calculate the
cracking strength of the plate for different crack lengths,
specifically, different length of interface 1 on which only
fiber bridging (no matrix retention) is imposed. A con-
stant ambient load for different imposed crack lengths,
if found, implies steady-state cracking. This concept is
somewhat analogous to the displacement control method
utilized in many FEA.

Fig. 8 shows the computational results of the plate with
different length of interface 1 ranging from 4 mm to 44 mm.
As can be seen in Fig. 8(a), a stable crack growth is found
before the peak load. After that, a descending ambient
stress accompanied by an increase in crack length indicates
unstable cracking. However, this unstable crack propaga-
tion is bounded and the ambient stress approaches a con-
stant value (rss) with further crack extension. Fig. 8(b)
displays a quarter of the crack opening profile after the
peak load. Interestingly, the crack starts with an oval shape
and tends to propagate in a flat manner after a certain
length of propagation. Fig. 8(c) and (d) show the dm � L

and the Ddm/DL � L curves, respectively. It can be seen
nt the ambient stress states in (a) and the corresponding crack profiles are
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that the crack opening approaches a constant (dss) when
the crack tip moves forward and Ddm/DL approaches zero
which suggests the cessation of crack widening as it extends
in length. These observations confirm the attainment of
steady-state cracking.

According to the condition of steady-state cracking (Eq.
(1)), the complementary energy J 0b should equal the matrix
toughness Jtip at steady-state. From the computational
results shown above, the crack opening at steady-state dss

in this case is 2.582 lm (Fig. 8(c)). Using this information
combined with the given bridging law r(d), the complemen-
tary energy J 0b at steady-state can be calculated and the
value is 4.9992 J/m2, which is very close to the theoretical
value (J 0b ¼ J tip ¼ 5 J=m2Þ. Through this check, the condi-
tion for steady-state cracking is further confirmed.

From the above discussions, it is clear that appropriate
bridging traction relations, in contrast to strong bridging,
are required in order to achieve steady-state cracking and
to ductilize brittle matrix composite. This fact has been
recognized and implemented in designing a short fiber
reinforced brittle matrix composites – Engineering
Cementitious Composites (ECC) (Li et al., 2001). In
ECC, the complementary energy (J 0b) was maximized
through tailoring proper fiber/matrix interface properties.
On the other hand, Jtip can be minimized through matrix
modification. However, excessively weak matrix (lower
Jtip) usually introduces low compressive strength which
is not desirable for most building materials. Eq. (2)
allows a systematic means of searching for optimal com-
binations of matrix toughness (Jtip) and fiber bridging
properties (J 0b).

6. Conclusion

The research demonstrates and simulates steady-state
cracking in composites utilizing a numerical approach.
The numerical results establish without a doubt that the
steady-state cracking criterion is a fundamental principle
that must be satisfied for ductilizing brittle matrix compos-
ites via multiple cracking. As also demonstrated from
experimental research (Li et al., 2001), deliberate control
of the bridging law through tailoring of the composite con-
stituents, as governed by the steady-state cracking crite-
rion, is key to attaining ductile composites.

The cohesive traction model with two interface types
provides good results in simulating single crack propaga-
tion for a broad range of composite materials. This
model will be extended to simulate the multiple-cracking
behavior in reinforced brittle matrix composites in the
future.
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