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ABSTRACT: It is well known that cracking in concrete slabs significantly influences their service life. Concrete
shrinkage may be the principle reason for the initial crack formation in the slabs. This paper presents an attempt
to provide an analytical tool for the prediction of stress distribution in reinforced concrete slabs after undergoing
matrix shrinking restrained by the reinforcing bars. The model incorporates the material parameters of the
reinforcing bar and the concrete matrix, and it enables prediction of the stress development in concrete with
time.
INTRODUCTION

As a kind of structural element, continuous reinforced con-
crete slabs have been widely used in modern transportation
engineering, such as highway and airport pavements and
bridge decks. The average life of a concrete slab is determined
by many factors including initial design, material properties,
traffic, environment, salt application, presence and effective-
ness of protective systems, maintenance practices, etc. All of
these factors influence the development of cracks in slabs dur-
ing service. Cracking in slabs reduces the load capacity and
speeds up fatigue failure (Matsui 1997; Perdikaris and Beim
1988; Perdikaris et al. 1989; Kumar and GangaRao 1998). In
addition, cracks allow water and other chemical agents, such
as deicing salt, to go through the cover layer to come into
contact with the reinforcements, leading to reinforcement cor-
rosion and rupture.

Concrete shrinkage may be the principal reason for the in-
itial crack formation in slabs because, in general, slabs have a
much larger surface area compared to other kinds of structural
members, such as beams and columns. As a result, shrinkage-
induced cracking in the slabs becomes more critical. Concrete
shrinks as the cement paste hardens. The magnitude of shrink-
age can be reduced by using concrete with the smallest pos-
sible amount of water and cement compatible with other re-
quirements, such as strength and workability, and by
moist-curing of sufficient duration. However, no matter what
precautions are taken, a certain amount of shrinkage is usually
unavoidable. If a slab of moderate dimensions rests freely on
its supports, it can contract to accommodate the shortening of
its length produced by shrinkage. Usually, however, slabs and
other members are jointed rigidly to other parts of the structure
and cannot contract freely. The reinforcements in the slab will
also serve as a kind of restraint source to prevent concrete
shrinking. This results in tensile stresses known as shrinkage
stresses. A change in temperature may have an effect similar
to shrinkage, which also results in stresses in the slab, with
increasing temperature results in compressive stresses and de-
creasing temperature results in tensile stresses. As the tensile
stresses produced by temperature and shrinkage attains the ten-
sile strength of the concrete, cracking occurs in the slab. In
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FIG. 1. Schematic Diagrams Showing Representative Ele-
ment in Typical Steel-Reinforced Concrete Slab and Equivalent
Model Used in Analyses

this article, the effect of reinforcement on the stresses induced
by matrix shrinkage in slabs will be modeled and analyzed.

PROBLEM FORMULATION

To simulate the stress distributions in the matrix and rein-
forcement due to matrix shrinkage, a representative volume
element containing one reinforcing bar with width B (bar spac-
ing), height H, length L, and bar diameter 2rs is modeled. The
representative volume element is further simplified into an
equivalent cylinder with a reinforcing bar embedded along the
longitudinal direction, as shown in Fig. 1, where r is the di-
rection perpendicular to the reinforcing bar axis, x is the di-
rection parallel to the reinforcing bar axis, and both ends of
the reinforcing bar are located at x = 0 and x = L, respectively.
By setting the same cross section area between the rectangle
and a circle, the corresponding equivalent outer radius R is
given by

HB
R = (1)Î p

In calculating the stress field developed due to shrinkage
deformation, several simplifying assumptions are made: (1)
The matrix and steel reinforcement are both elastic materials;
(2) the interface between matrix and steel reinforcement is
infinitesimally thin; (3) there is no slip between the reinforce-
ment and the matrix at the interface; and (4) the shrinkage
strain in the matrix εm, at a distance R from the reinforcement,
is equal to the free shrinkage of the matrix.

When the matrix subjects a shrinkage strain εm in the direc-
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tion of a reinforcing bar, based on the above assumptions,
similar to the treatment by Cox (1952), the axial force equi-
librium for a reinforcing bar of length dx in the presence of
the axial stress ss in the reinforcing bar and the matrix/rein-
forcing bar interfacial shear stress t0 requires

­s 2s
1 t = 0 (2)0

­x rs

Further differentiation of (2) with respect to x results in
2­ s 2 ­ts 0

1 = 0 (3)2­ x r ­xs

From the shear lag theory (Cox 1952), one has

E v 2 um
t = (4)0 2(1 1 n ) r log(R/r )m s s

where Em and nm = Young’s modulus and Poisson’s ratio of
matrix, respectively; and v and u = displacement field at r =
R and r = rs, respectively (Fig. 1). Then one has

­t E s0 m s= ε 2 (5)mS D
­x 2(1 1 n )r log(R/r ) Em s s s

Replacing ­t0 /­x with (5) in (3), the general equation govern-
ing the axial stress distribution in the reinforcing bar ss is

2­ s E 1 ss m s
1 ε 2 = 0 (6)mS D2 2­ x r (1 1 n ) log(R/r ) Es m s s

This differential equation with boundary conditions that ss =
0 at x = 0 and x = L, yields

L
cosh b 2 xS D2

s = E ε 1 2 (7)s s m
LF G

cosh b
2

where

Em
b = Î 2(1 1 n )r E log(R/r )m s s s

Also, the mechanical equilibrium of the extent load and inter-
nal stress distributions in the matrix-reinforcing bar composite
cylinder at any location x requires

R

s A 1 2p s r dr = 0 (8)s s mE
rs

where sm = axial stress in the matrix. Introducing an average
stress in the matrix sma, which is defined by

R

2p s r drmE
rs

s = (9)ma
Am

Then one has

s A 1 s A = 0 (10)s s ma m

where As and Am = cross-sectional areas of the reinforcing bar
and matrix, respectively, and

L
cosh b 2 xS D2

s = 2fE ε 1 2 (11)ma s m
LF G

cosh b
2
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TABLE 1. Related Parameters Used in Model Calculation

Parameter
(1)

Value
(2)

B (mm) 200
H (mm) 200
rs (mm) 6, 10, 15
εm,u 8E1024

Em,28 (GPa) 30
nm 0.2
Es (GPa) 210

where f = As /Am = reinforcing degree. The negative sign in
(11) indicates that the stress in the concrete matrix is opposite
to that in the steel bar. The volume shrinkage of concrete im-
poses a compressive stress on the reinforcing bars and a tensile
stress on the concrete matrix itself. When dsma /dx = 0, one
obtains x = l/2, and so the maximum average stress in the
matrix sma0 can be given by

1
s = 2fE ε 1 2 (12)ma0 s m

L
cosh bF G

2

Eq. (12) provides the general relationship between maximum
matrix stress and matrix shrinkage for a given slab geometry
and reinforcing degree. From this relationship, it is noted that
for a given matrix shrinkage level εm, the average maximum
tensile strength sma0 increases with slab length L . As sma0

attains the tensile strength of the matrix material, cracking
will occur. It is noted also that there is an asymptotic limit of
(12) for a given shrinkage strain (i.e., as L → `, sma0 '
2fEsε m, which only depends on the reinforcing degree, ma-
trix shrinkage strain, and elastic modulus of reinforcing bar).

MATERIAL PARAMETERS

The free shrinkage stain ε m, elastic modulus Em, and tensile
strength st are time-dependent concrete material properties.
Since cracking in the matrix is a combined result of these
parameters, shrinkage crack development also becomes time-
dependent. As an example, the following empirical expres-
sions, which describe the time-dependent law of the above
parameters, are used in the present analysis.

Long-term studies (Branson 1977) show that, for moisture-
cured concrete at any time t (in days), the shrinkage strain can
be predicted satisfactorily by the following:

t
ε = ε (13)m,t m,u35 1 t

where = free shrinkage strain at time t (in days); andεm,t

= ultimate value after a long period of time. The time-εm,u

dependent law of the elastic modulus of the concrete matrix
can be estimated by (Mosley and Bungey 1990)

E = E [0.52 1 0.15 log(t)] for t # 28 (14a)m,t m,28

E = 1.019E for t > 28 (14b)m,t m,28

where and = elastic moduli at time t (in days) andE Em,t m,28

28 days, respectively.

MODEL RESULTS AND DISCUSSIONS

As an example of calculation, the related parameters used
in the model are listed in Table 1. The average maximum
concrete tensile stress sma0 as a function of time t since casting,
with three steel bars with radii of 6, 10, and 15 mm, is shown
in Figs. 2–4 for different slab lengths. First, it can be seen
that the axial concrete stress increases with time. Before



FIG. 2. Stress Development in Concrete due to Shrinkage in
Terms of Stress-Time Curves, Showing Results of f 5 0.0036
and Different Slab Lengths

FIG. 3. Stress Development in Concrete due to Shrinkage in
Terms of Stress-Time Curves, Showing Results of f 5 0.01 and
Different Slab Lengths

FIG. 4. Stress Development in Concrete due to Shrinkage in
Terms of Stress-Time Curves, Showing Results of f 5 0.0225
and Different Slab Lengths

around 50 days since casting, the stress increases with a high
rate and later with a low rate. Second, the concrete tensile
stress is also a function of slab length. The stress increases
with increase in length L. However, the rate of increasing is
gradually reduced and finally converges to a plateau of
fEs ε m (Fig. 5). A critical slab length Lc has been defined, such
that at this critical slab length, the maximum average tensile
stress in the concrete matrix is equal to 98% of that for an
infinitely long slab under a given shrinkage strain; that is

2
L = ar cosh 50 (15)c

b

FIG. 5. Effect of Slab Length on Stress Developed in Con-
crete, for Three Typical Reinforcing Bars

In Fig. 5, it can be seen that Lc is a function of f. For example,
as f changes from 0.0036 to 0.0225 (rs changes from 6 to 15
mm), the Lc increases from 2.19 to 11.25 m. However, this
does not mean that the higher reinforcing degree can delay the
cracking in concrete because the cracking is controlled by the
tensile strength of concrete. In fact, the higher reinforcing de-
gree can raise the possibility of cracking due to the higher
resulting tensile stress (Figs. 2–4). It is noted that the resulting
concrete tensile stresses in a slab with a general slab length
and reinforcing degree, such as 6 m and 1%, are lower than
the tensile strength of normal concrete. However, as other
shrinkage restraint factors exist, such as girders in bridge decks
and subbase in concrete pavements, the total resulting tensile
stresses might be large enough to crack the slab.

The present simple analysis considers only shrinkage re-
straint from the reinforcing bars. When other restraints such
as a substrate supporting the slabs are present, they must also
be accounted for in generating tensile shrinkage stresses in the
slabs.

CONCLUSIONS

This paper presents an analytical model for predicting
shrinkage stress in concrete due to the restraint of reinforcing
bars in reinforced concrete slabs. The analytical solution in-
dicates that as the matrix shrinks, compressive and tensile
stresses are developed in the reinforcing bars and concrete ma-
trix, respectively. The tensile stress in the concrete matrix is
not only a function of shrinkage strain, but also a function of
slab geometry, reinforcing degree, and elastic moduli of con-
crete and reinforcement. The model enables prediction of the
stress development in concrete and reinforcement with time.
The present analytical solution is applicable only to the case
of restraint from reinforcing bars.

ACKNOWLEDGMENT

This work has been supported by a grant from the National Science
Foundation (CMS-9872357) to the University of Michigan, Ann Arbor,
Mich.

APPENDIX. REFERENCES

Branson, D. E. (1977). Deformation of concrete structures, McGraw-Hill,
New York.

Cox, H. L. (1952). ‘‘The elasticity and strength of paper and other fibrous
materials.’’ Br. J. Appl. Phys., 3, 72–79.

Kumar, S. V., and GangaRao, H. V. S. (1998). ‘‘Fatigue response of con-
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1299



crete decks reinforced with FRP rebars.’’ J. Struct. Engrg., ASCE,
124(1), 11–16.

Matsui, S. (1997). ‘‘Technology developments for bridge decks—Inno-
vations on durability and construction.’’ Kyouryou To Kiso, (8), 84–92
(in Japanese).

Mosley, W. H., and Bungey, J. H. (1990). Reinforced concrete design,
1300 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000
Macmillan Education Ltd.
Perdikaris, P. C., and Beim, S. (1998). ‘‘R/C bridge decks under pulsating

and moving load.’’ J. Struct. Engrg., ASCE, 114(3), 591–607.
Perdikaris, P. C., Beim, S. R., and Bousias, S. N. (1989). ‘‘Slab continuity

effect on ultimate and fatigue strength of reinforced concrete bridge
deck models.’’ ACI Struct. J., 86(4), 483–491.


