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ABSTRACT \

A novel experimental techique based on the J-integral is employed to experimentally determine the
tension-softening (6-9) relations in cementitious composites. The 6-5 relation provides information
on fracture resistance and could be used for numerical simulations of crack formation and propagation in
structures constructed from materials which exhibit "tension-softening" behavior. With this method,
no complicated modifications to testing machines are required. In the experiment, two pre-cracked
specimens with slightly different notch lengths are used. The corresponding values of load, load point
displacement and crack tip separation are simultaneously recorded. From this experimental data, the
J-integral as a function of crack tip separation as well as the tension-softening curve can be deduced.
These curves also provide a measure of the critical energy release rate. The experimental technique has
been applied to mortar. It is suggested that the relatively simple technique can provide reliable material
parameters for characterization of fracture resistance in plain and fiber reinforced cementitious
composites independent of specimen geometry, size and loading configurations.

INTRODUCTION

The need for characterizing fracture resistance in concrete is well established. Fracture resistance characterization
is needed for material toughness or ductility ranking and for design against fracture and cracking failure in concrete
structures. The Kp.-test standard for many brittle materials, however, has been recognized to be inadequate for
toughness testing in concrete. This is because of the size-dependence of the apparent fracture toughness resulting
from specimens of typical laboratory size, due to the relatively large process zone in comparison to other
characteristic planar dimensions of the specimen. For this reason, a valid Kj-test requires impractically large
specimen sizes [1,4].

The tension-softening (6—9) relation is defined as the functional relationship between the traction acting across a
crack plane and the separation distance of the crack faces, in a uniaxial tension specimen loaded quasi-statically to
complete failure. The 0—3 relation contains information on the tensile strength f;, the critical separation distance
8., and the critical energy release rate G, under the small scale yielding condition [2]. In addition, with the o-§
relation, fracture analysis may be performed even when linear elastic fracture mechanics (LEFM) is inapplicable
[3.4,11]. Li & Liang [3] describes the transition of validity from LEFM to non-linear elastic fracture mechanics to
simple strength concept. Hillerborg [4] suggests the use of the 6—3 relation in analyzing crack formation and
propagation in structures. Furthermore, when G is deduced from an experimentally determined -8 curve which
involves no assumption of LEFM, G may be expected to be size-independent even if the specimen used to
determine the 0-8 curve is small. Thus the 0-5 relation is a very useful basic ‘parameter’ characterizing fracture
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resistance in cementitious composites.

Attempts at measuring 6—5 curve using direct uniaxial tension tests have met with various successes [5,6,7.8]. An
inherent difficulty with the direct tension test is the stability of loading the specimen during the softening process,
which is the main focus of the test. Often modification of the machine is necessary to stiffen the loading system.
Even then, problems related to load eccentricity, crack location(s), effects of strain gauge length and elastic
unloading make the uniaxial tension test difficult to perform.

In this paper, we present some results on measuring the curve for mortar, based on a technique briefly introduced
by Li [2], which eliminates the problems mentioned above. The theory behind the technique is summarized in the
following section. The experimental set-up will then be described. The data analysis procedure as well as test
results for mortar and comparisons with available independent test data are reported next. While further tests are
being conducted, we regard the preliminary results as encouraging in confirming the validity of the theoretical
concepts and the advantages of this technique.

F EXPERI
Rice [9] showed that the path-independent J-integral defined as
J =) [Wdy - T(duy/dx)ds) @
where W is the elastic strain energy density, T; is the traction vector, u; is the displacement vector, and other
quantities are defined in Fig. 1a, may be interpreted as the potential energy (PE) change per unit crack advance in a
linear elastic body. Hence

= - o(PE)/0a @

where a is the length of the crack, and the minus sign in (2) indicates a decrease in potential energy when the crack
extends in length under fixed grip condition.

Y T
[
ft
Total Area = J N
)
8
FIG. la FIG. 1b
J-Integral Contours around Crack Tip A Typical Tension-Softening Curve

We now specialize the J-integral for a material which exhibits localized inelastic deformation on a plane ahead of
the crack tip. If we shrink the general contour I onto I'j running alongside the process zone, as shown in Fig. 1a,
it can be shown [9,10] that Eq. (1) reduces to

L
1=-[ o0 @%0x) dx @
a
where o(x) and 8(x) are the normal stress and opening displacement at the point x in the process zone. The upper
integral limit L is measured to a point x ahead of the physical crack tip where 8(x) = 0. Changing variables from x
to 8, and since o is a single valued function of & (i.e. for each 3, there corresponds a unique value of ¢ in the 68
relation, Fig 1b),
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3
16)= | o@)ds 4)
0

A critical valueof J =7 ¢ is reached when the separation 3 at the physical crack tip reaches 80. In this case J ¢ may
be interpreted as the complete area under the tension-softening curve (Fig. 1b) and 8. is the material separation at
which the load carrying capacity just vanishes. In the special case where the process zone size (L-a) is much smaller
than all other planar dimensions in the problem, J ¢ and the critical energy release rate G, coincide [9]. Equation (4)
may be regarded as a specialization of (1) under the assumptions of a localized planar process zone in which the
tensile stress decays from f, to zero as the opening increases from zero to Sc. The 69 curve, however, does not need
to observe the small scale yielding condition of LEFM and is thus a more fundamental material property than G...

Since the potential energy change may be obtained from a global load
deformation curve, ] may be readily determined experimentally. To
illustrate, for a compact tension specimen loaded with load level P and
load point displacement A, as shown in Fig. 2, Eq. (2) implies

A
J(A)=-(1/B) ,[ (9P/3a)5: dA' O]
0

where B is the thickness of the specimen and the minus sign indicates a
potential energy decrease when the crack advances at fixed load point
displacement A. Since crack tip positions are difficult to locate
accurately, it would be next to impossible to directly evaluate (5) by
propagating a crack in a single specimen. An approximate procedure is
to use two specimeps identical in every respect except for a small
difference in notch length (ay-a;) as shown in Fig. 2a and 2b. In this
case, (5) may be interpreted as the area between the P-A curves for each
of the two specimens, i.c.

J(&) = (1/B) [ Area (A) / (ay - ap) ] ©

Since a; and a, are pre-cut (or casted) notch lengths, there should be
no difficulty calculating J(A). It may be expected that J(A) increases
from zero and asymptotically approaches J c

If I, is all we want, then (6) is already adequate. If we want to deduce
the tension-softening relation, Eq. (4) may be utilized, since by
differentiation,

6(8) = 9I(5)/95 (7a)
and combining with (6)
o(®) = (1/[B(ag - apI}[@ Area (4) /33 ] (7b)

To use Eq. (7) effectively, A and & must be correlated. This can be
done by recording the opening at the crack tip during the loading
process. Thus the experimental outputs required to obtain 6(3) are a set
of P-A and P-4 relations for each type of specimen with different notch
lengths. While (a2 - a1) should be as close to zero as possible in
principle, experimental accuracy and material variability put a lower
limit on this value.

EXPERIMENTAL SET-UP

imen ifications and Pr ion;
The compact tension specimen dimensions are shown in Fig. 3. The

two types of specimens differ only in their notch lengths by 7.62 mm.
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For this preliminary study, we have chosen a mortar with composition shown in Table 1.

These specimens are prepared using a plexi-glass mould shown in Fig. 4a, with the notches casted in by two sets of
teeth of a stiff aluminum bar. After curing, the aluminum bar with the teeth was removed by the screw action (Fig.
4b). This preparation procedure ensures uniformity of the two types of specimens, and also avoids damages which
may be introduced by cutting the specimens and notches. More details in specimen preparation can be found in [10].

stiftf bar
/o % Driving Screw Driving Screw
s
stiff bar
teeth for brass 97:1
43.18 =m notch

Ml e
35.56 sm notc

Plexi-glass Mold
Plexi-glass mold /
e )
L

FIG. 4a FIG. 4b
Compact Tension Test Specimen Mould Removal of Test Specimens from Mould
TABLE 1
Material Specification of the Present Investigation
Cement Type: Type 11l portland cement
Aggregate Type: Seive No. 10 crushed stone
sand nominal dimension = 2.004 mm
Water/Cement Ratio: 0.5
Cement: 311 kg/m3
Aggregate: 622 kg/m3
Water: 155.5 kg/m3
Age: 7 days

Instrumentation Equipmen -

A photograph of the experimental set-up is shown in Fig. 5. Details of the instrumentation scheme is shown in
Fig. 6. Apart from the load and load point displacement measurements, the most important piece of information is
the crack tip material separation. This separation (as well as the load point displacement) was measured by means
of a non-contacting proximity sensor system illustrated in Fig. 7. These displacement measuring devices use an
inductive operating principle to measure the distance between the proximity sensor tip and the metallic target (made
of aluminum). This distance controls an oscillator's amplitude, which provides an analog signal proportional to
displacement. The advantages of using these proximity sensors include the high accuracy (with resolution of .1jm)
and extreme stability (insensitivity to environmental changes). The detailed arrangement of the proximity sensors
and targets is shown in Fig. 8. Further details of sensor calibration and equipment set-up can be found in [10].
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FIG. 5
Photograph of
Experimental Set-up
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RESULTS AND DATA ANALYSIS PROCEDURE
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Load vs Load Point Displacement Raw Data for (a) 35.56mm notch depth and (b) 43.18mm notch depth
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Crack Tip Separation vs Load Point Displacement Raw Data for (a) 35.56mm notch depth
(b) 43.18mm notch depth

The raw data are in terms of P vs. A and P vs 8 curves as shown in Figs 9a,b and 10a, b. Each test is repeated at
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least four times and the three most consistent results are adopted for averaging by regression techniques. From
points corresponding to the same value of P on the P-A and P-3 curves, data sets of § vs A are obtained. These are
shown in Figs. 11a and 11b.

The data analysis procedure can be summarized in the following steps:

1. Functions of the form (polynomial in A) * exp(-bA) (where b is a constant) are fitted to the P-A curves
for both types of specimens.

For a = 35.56 mm P =P(A)
a=4318 mm P =P,(4) (Fig. 12)
2. A polynomial is fitted to the 8—A data points for each specimen

For a = 3556 mm & = 5{(A)

a=43.183 mm J = 5,(4) (Fig. 13)
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FIG. 12 FIG. 13
Load vs Load Point Displacement Crack Tip Separation vs Load Point Displacement
Regressed Curves Regressed Curves

3. For a given value of A,

A
J(4) = (1/Bay -ap1} | [P1(A)-PyA)1dA'  (From Eqn.6)
0

and we take

8(8) = [ 81(8) + 85(A) 1/ 2

Hence, a new data set of J vs § is obtained.

4. A function is fitted to the J-& values as obtained above, taking.into consideration the following
points:
(i) As dincreases, J will approach a constant value J..
(ii) At 3=0, J=0. This is obvious since when & is zero, both P and P, are zero.
(iii) At 8=0, dJ/38 = 0. )

The third point needs more detailed explanation. Note that

' 9J/38 = (31/3A) / (38/3A)
Atd=A=0, dJ/0A= {1/[B(ay-a))]} [P1(A)-Pp(A)] = 0 (since P1(A) =Py(4)=0)
Theoretically, at 8=0, d8/0A should also be zero because when A first increases from zero, the tensile
strength has not yet been reached at the crack tip and thus there is no crack separation. In other words,
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95=0 and thus 85/0A = 0. However, in practice, in order to measure 8, we must put our measuring
equipment and its target on two holders at opposite sides of the crack. As A increases from zero, the
holders will move apart from each other and what we get for § is actually the average strain times the

distance between the holders. Therefore 95/0A obtains a finite value even at 5=0. Hence 9J/96 = (zero/
a finite value ) = 0.

With the above mentioned constraints in mind, the J-8 values are fitted with a function of the form
J(8) = a- (a+a*p* &+ b*32 + c*&3) *exp(-p*5)
The result is shown in Fig. 14.

5. J(3) is then differentiated with respect to § to obtain the -3 curve on Fig. 15. Note that the deduced
o3 curve rises to a peak initially, then decreases as expected with increasing 8. The rising portion is due
to the presence of strain between the instrument holders. It can be interpreted as sum of the elastic energy
stored and the distributed damage (microcracking) prior to localization of inelastic deformation onto the
fracture process zone, and therefore should not be regarded as part of the 69 relation. Fig. 16 shows the

corrected 6—9 curve.
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As we have three sets of data for each crack length, if we fit an expression to each of the individual curves and
proceed as above, nine separate J-8 curves and 6-3 curves can be obtained. An upper bound and a lower bound can

then be drawn to envelope those curves. These bounds are shown in Fig. 14 and Fig. 16 to give an idea of the
deviation of raw data from the best fit.
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In Fig. 16, the 6-5 curve is extrapolated to obtain the critical crack separation. This is shown as the dotted line.
In future tests, data recording should continue until the P-A curves for the long notch length specimens join with
those for i e short notch length specimens. For this set of test, the material properties f;, G, &, and I, .
(=E.G /f ) are summarized in the first row of Table 2. The value of initial elastic modulus E, (from d1rect
compress1on tests) is also given as a reference of the quality of the mortar tested.

TABLE 2
Comparison of Different Test Results

% Ak LI 2] e ok ok
Reference Initial Tensile Fracture Critical Characteristic
Elastic Modulus  Strength Energy Separation Length
Ec fy c c leh
(GPa) (MPa) (N/m) (pm) (cm)
(1) This in-

vestigation 27.0 2.09 838 139.7 51.80
(2) Evans &

Marathe[5] 18.1 2.10 29.1 437 11.94
(3) Petersson [6] 41.7 361 115.9 178.6 37.09
(4) Gopalar-

atnam & 302 335 835 112.0 2247

Shah [7]

(5) Reinhardt [8] 332 349 144.1 238.4 39.28

* The initial elastic modulus of this investigation was calculated from the direct compression test: those
of the other investigations were calculated from their given stress-deformation curves,

** Calculated from area below tension-softening curve.

*#* Bstimated value from extrapolation.

*ikok To compare with other results, this value has to be corrected as described in the text.

YERIFICATION OF EXPERIMENTAL RESULTS

Direct comparison of the tension-softening relation deduced by our technique with those by direct tension tests
performed by other researchers [5,6,7,8] is met with difficulties since material compositions are different. However,
a comparison in normalized form (with ¢ normalized by f; and 3 by L.p) is shown in Fig. 17.

Instead of the 1, in Table 2, we used a corrected value for 1, to account for the difference in age of our specimen
(7 days) and those of other investigators (28 days). It is generally accepted that (f); days = 0.7 ()03 days: G, and
E,, also increase with age but not as drastically as f. Therefore, 1., (=E G /f;*) should decrease with age However
there is no general agreement on how 1, changes with age and the only published result is by Petersson (6) which
gives (I.p)og days approximately equal to 0.7 times (I.1)7 days' Following this empirical result, we corrected the
value of lop 10 36 26 cm at 28 days and used this value to obtain the normalized curve shown in Fig. 17. »
(Actually, the shape of the 0~ curve may also change with the age of the specimen. However little information is
available to warrant further modification of our results). In general, the shape of the deduced 68 curve agrees well
with those obtained by other investigators.

If we compare the relative values of f, and G, in Table 2, it can be seen that our specimens give a relatively high
ratio for G /f;. There are two plausible explanations. Firstly, our test is carried out at 7 days. With increasing
age, the increase in f, will be relatively more than the increase in Gy, resulting in a lower G /f; ratio at 28 days.
Secondly, the material we used is single-sized and without any finer particles besides cement. Since G, is generally
believed to increase with particle size, the lack of fine particles leads to a higher averaged particle size and a higher
value for G, in our specimens.
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FIG. 17
Comparison of Different Tension-Softening Curves

A standard splitting test was performed on the same batch of mortar (with the same curing time) as used for the
compact tension tests. The resulting splitting tensile strength was 3.65+ 0.20 MPa. This is much higher than the
value of 2.09 MPa (1.55-2.42 MPa) obtained for the 6—-8 curve.

A plausible explanation for the discrepancy in f, is the difference in strain rate used in the split test and that used
in the compact tension specimen test. In the split test, the loading rate is about 1.037 MPa/min., in compliance
with the ASTM standard. For the compact tension specimen, the average loading rate at the crack tip (assuming no
stress concentration) for the second half of load increment before reaching the tensile strength is estimated to be
0.484 MPa/min.. Actually, when the tensile strength is approached, the stress-strain curve of the material tends to
flatten off. The loading rate then can be much lower than the average. Moreover, the tensile strength obtained
indirectly from the compact tension specimen is also affected by material ahead of the crack tip, where the strain rate
is lower than that at the tip. The expected lower strain rate in the compact tension test may lead to a lower predicted
tensile strength, based on correlation between strain rate and tensile strength observed by [13]1. However, even the
strain rate effect may not account fully for the discrepancy noted.

In future, direct tensile tests at appropriate loading rates will be performed as control tests. Only the tensile
strength is needed, and the result may be used to supplement the data obtained in the indirect technique for the 6—§
curve described above.

To fully verify the applicability of the present technique, specimens of various sizes should be tested to see if the
obtained G- curve (and thus the value of G,) is size-independent. Though this is not yet carried out, we expect the
o8 curve to be size-independent as our testing technique does not involve any assumption of LEFM and the
specimen size should therefore not affect our result,

CONCLUSIONS

The J-integral based experimental technique described in this paper has the advantages of requiring only small
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specimens, a simple stroke controlled loading machine and is relatively stable. While the general agreement of the
shape of the 6—8 curve with other investigations gives us more confidence in the application of this new
experimental method, the disagreement of tensile strength with control test results calls for the need of further
investigations. Currently, work is being done to refine the experimental technique based on 4 Point Bend
specimens. The technique will be applied to study the fracture resistance of short-strand fiber-reinforced composites.
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