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Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with
fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a
composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for
both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain-
hardening can be practically designed for both types of composites by proper tailoring of material structures.

INTRODUCTION

Pseudo strain-hardening in fiber reinforced composites is
associated with the multiple cracking phenomenon of the
brittle matrix. To envision this phenomenon, consider a
composite specimen subject to uniaxial tensile loading.
As the load is increased, a matrix flaw (presumably the
largest and oriented normal to the loading direction) may
spread over the cross-section of the specimen. The
matrix crack may spread stably or unstably, depending
on the initial flaw size and the reinforcement details. If
spreading is unstable, then a first macroscopic crack is
formed in the composite. For an adequately reinforced
composite, the composite load will be shared by the
bridging fibers. These fibers then transfer the load via
their interface back into the matrix. If enough load is
transferred, the matrix may crack again and the process
repeats until the matrix is broken by a series of sub-
parallel cracks of approximately equal crack spacing.
Straining of the bridging fibers across the matrix cracks
and within the matrix blocks give rise to a composite
strain that can be substantially higher than the matrix
failure strain alone. The importance of this enhanced
strain capacity is due to the maintained or even rising
composite load during this straining process. Pseudo
strain-hardening and multiple cracking have been
observed in continuously reinforced ceramic and cement
matrices with aligned fibers. Figures 1a,b show the
multiple cracking of SiC reinforced glass ceramics
(Marshall and Evans, 1985) and Carbon fiber reinforced
cement (Akihama et al, 1984). Pseudo strain-hardening
and multiple cracking were observed in a random
discontinuous polyethylene fiber reinforced cement

(Figure 1c, Li and Wu, 1991). The pseudo strain-
hardening process and related composite tensile
properties have been addressed by a number of
investigators (see, e.g. Aveston et al,1971; Marshall et al,
1985,1987; Budiansky et al, 1986; McCartney, 1987; and
Mobasher et al, 1991 for continuous aligned fiber
reinforced composites, Krenchel and Jensen, 1980;
Laws, 1987; Leung and Li, 1989; Li and Leung, 1992;
and Li and Wu, 1992 for aligned and randomly oriented
discontinuous fiber reinforced composites).

As will be clear from the discussions to follow, it is
much more difficult to achieve pseudo strain-hardening
in random discontinuous fiber composites compared to
continuous aligned ones. However, it is by no means
impossible. The challenge is to determine the proper
conditions underwhich multiple cracking will occur,
despite the reduced efficiency of stress transfer in the
random and discontinuous bridging fibers.

For a continuous aligned composite, adequate
reinforcement implies that the bridging fibers have
substantial number and high enough tensile strength to
take over the additional load shed by the cracked matrix.
Otherwise, the fibers will rupture resulting in
catastrophic brittle type failure. For a random
discontinuous fiber composite, adequate reinforcement
implies that the bridging fibers have substantial number,
high enough bond strength and embedment length (or
surface area) to take over the additional load shed by the
cracked matrix. Otherwise the fibers will be pulled out
resulting in catastrophic brittle type failure. These are
the physical limitations we will use for deriving the
critical conditions for pseudo strain-hardening in this
paper. For short fibers systems, pseudo strain-hardening
may also be limited by fiber rupture. However, this case
has not been worked out yet.

"Micromechanical modelling of quasi-brittle materials behavior" edited by Victor C Li, ASME Book No AMR118 $60 (members $30)

Appl Mech Rev vol 45, no 8, August 1992

© 1992 American Society of Mechanical Engineers




Li and Wu: Pseudo strain-hardening




392 Li and Wu: Pseudo strain-hardening

critical fiber content above which multiple cracking will
occur. Thus

Vit = —— o ®
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m

Equation (3) can only serve as a rough estimate of
the critical fiber volume fraction. Even when the
composite fails with a single crack, the failure load must
depend on the matrix fracture energy, flaw size and fiber
bridging toughness, rather than just on the matrix failure
strain alone (see, e.g. Marshall et al, 1985; Li and Leung,
1992). There is at present no equivalent of eqn.(3) for
discontinuous random fiber composites, although the
standard procedure for the Rule of Mixture approach
would be to introduce efficiency factors to reduce the
contribution of fibers from that of the aligned continuous
case (see, e.g. Bentur and Mindess, 1990). In the
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FIG. 2. Condition of multiple cracking for ductile fiber/brittle
matrix composites (after Aveston et al, 1971).

following, we show that the critical fiber volume fraction
for pseudo strain-hardening may be expressed in terms of
the matrix fracture energy and other fiber and interface
related parameters. Indeed, for both continuous or
discontinuous systems, we demonstrate in this paper that
the critical fiber volume fraction may be interpreted
physically as a requirement on the level of toughness
induced by fiber bridging as a minimum multiple of the
crack tip toughness.

SHORT CRACK AND LONG CRACK LIMITS

In the short crack limit (Figure 3a), the crack, while
bridged by fibers and therefore requires additional
applied load to drive the crack front, behaves essentially
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like a Griffith crack. Once the net stress intensity factor
reaches the crack tip toughness, unstable crack
propagation assumes. In the long crack limit (Figure 3b),
the crack opening near the crack center asymptotically
approaches that of a through-section crack, and the fiber
bridging stress there equilibrates with the externally
applied load. In this limit, the critical load approaches an
asymptotic value. This crack is also known as
propagating in a 'self-similar’ or 'steady state' fashion,
since the stress and deformation fields with respect to the
crack tip remains unchanged with crack extension, At
this stage, therefore, propagation of the crack front by an
amount 8¢ is equivalent to replacing a strip of the loaded
composite material far ahead of the crack front by a
similar strip far behind the crack front (Figure 4). Such
equivalency has been exploited by Budiansky et al
(1986) in determination of the steady state tensile
strength of aligned continuous fiber composites by
considering the energy exchange process in these strips
of materials.
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FIG. 3. (a) Short crack with bridging fibers providing closing
pressure on crack franks (b) long crack showing crack flattening
under steady state condition. Elliptical crack shapes are assumed
in the present analysis. The actual crack shape is probably closer
to that shown schematically by the dashed lines.

&l

FIRST CRACK STRENGTH

In the short crack limit, the load required to advance the
crack front is clearly crack size dependent. The first
crack strength may be obtained (Marshall et al, 1985; Li
and Leung, 1992) from a consideration of the balance of
stress intensity factors associated with the applied
load K; , that with fiber bridging effect Kp and the crack

tip fracture toughness K :
K, +Kp =Ky, )

For small fiber volume fraction Kj;, can be taken to
be simply the matrix toughness X,,, Otherwise, following
Marshall et al (1985), Ky;p =(E. / Ep)Kpm , since the stress
intensity factor scales directly with stress. Eqn. (4) may
be rewritten as
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FIG. 4. Crack advance under steady state condition showing a
strip of the loaded composite material far ahead of the crack front
being replaced by a similar strip far behind the crack front.

KL =Kp =Ky, +|Kp| )

and Kp may be regarded as the enhanced composite
toughness due to fiber bridging. (Note that Kp is
negative due to closing pressure on crack flanks).
McCartney (1987) expressed K tip in terms of K,,
differently but coincides with Marshall et al's expression
for small V. Apart from the work of Miyajima and Sakai
(1991), the functional dependence of K:p onK,, and V¢
has not been experimentally examined.

K scales with the magnitude of the applied load o
and the crack size ¢, and is given by

Kp= 2\/%: ©

where the penny shaped crack configuration (in an
infinite body) has been assumed. The magnitude of K5
is expected to depend on the details of the fiber bridging
effect. Treating Kg-as due to applied traction op acting
on the crack flanks at radial distance r from the center,
K p may be expressed via superposition as

1
Kp = —2\/%‘[03[8(1;)] %
) -

The traction op is written as a functional of crack
opening & because the smeared out bridging stress of
fibers varies with the amount of crack opening, and & in
turns depends on the radial distance r from the crack
center. In (7), R=r/c. The bridging stress will first
increase until some critical crack opening, then decrease
due to fiber breakage and/or pull-out.

The bridging stresses, o, have been theoretically
derived based on frictional debonding of the interface for
continuous aligned (hereafter designated as CA),
(Marshall et al, 1985) and for discontinuous random
(hereafter designated as DR) composites (Li and Leung,
1992). These normalized stresses can be expressed in a
generalized form, which leads to

™
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&B=g[co(S/S')”2—c,S/S'] 58" (8

where §p=0p /0, ; G,=C2Vjt (L, /df ):8=8/(L, /2);
8" =2t/(1+M)Ef] (L, /dy ); N=V}Ef/ V En, and

2L, CA
=1Ly DR

where dy is the fiber diameter, Ly is the discontinuous
fiber length, and L, the critical embedment length (=0nds
/AT). O, is the fiber ultimate strength, assumed uniform
and deterministic, and 1 is the fiber/matrix interface
frictional bond strength. The constants Cp, C; and C; are
tabulated in Table 1 for the CA and DR cases. From
hereon, all constants C; with different values for CA and
DR can be found in Table 1. The mechanical influence
of fiber orientation is also explicitly considered,
expressed as the snubbing factor, g (Li et al, 1990).
Typically, g values are equal or greater than unity for DR
cases, whereas g equals one (no snubbing effect) for CA
composites. o, may be interpreted as the maximum fiber
bridging stress of the composite. Eqn (8) expresses a
spring-like relationship between the traction and opening
displacement across the crack faces at any point in the
wake of the crack front.

In general in the presence of fiber bridging, the
crack opening J is not known q priori as a function of
position R, and evaluation of Kp typically requires an
iterative process (see Marshall, 1985). For simplicity,
the crack profile is assumed to take on the same elliptical
shape (Figure 3) as that for a crack with uniform
cohesive traction (see, e.g. Brock, 1986), so that

S=,’5(1—R2 ) ©)

2
= E.L
wherec=c/coandco=[21‘(‘:| 6( U 2)2
tip § 16{1-v

The first crack strength 6. may be obtained when
equation (4) is satisfied, and making use of (6), (7), (8)
and (9):

ch/g—§£+[c3«/_—c45] (10)
where K = Kiip -,,c—w/—/S

800\/5
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Equation (10) depicts the first cracking strength
resulting from a combination of crack tip fracture
resistance (represented by the 1st term on the right hand
side) and fracture resistance associated with fiber
bridging (represented by the 2nd term in square brackets
of the right hand side). This equation remains valid as
long as the crack shape maintains elliptical as the
bridging zone grows.

CONDITIONS FOR PSEUDO STRAIN-
HARDENING

From the discussion relating to short and long crack
limits, it is clear that the short crack limit is associated
with first crack strength which is crack size dependent,
whereas the long crack limit is associated with the steady
state crack strength which is independent of crack size.
The transition from short to long crack limit occurs when
the bridging stress in the center of the (short) crack
becomes equal to the applied load. Further crack length
extension will be under the steady state condition. This
is illustrated in Figure 5, which shows the first crack
strength (eqn. 10) and the fiber bridging stress (eqn. 8)
plotted as a function of crack size.

The above consideration leads to a transitional crack
size ¢, , which satisfies

55(8m) =3 an
where the opening in the crack center (R =0) is given by
8,, =V from (9). Using (8) and (10) in (11) leads to

K =—=5,(Csy5 - C5,) 0<E, <1 (12)

Eqn (12) defines the magnitude of ¢

(=+Jcs / ¢o /8") for any given value of K. However,
C, cannot exceed unity since the bridging stress is either
decreasing (for short fibers being pulled out) or zero (for
continuous fibers being ruptured) for ¢, > 1 (Li and
Leung, 1992). This putsan upper limit on the value of
K. From (12) the critical values of K (K°™) are
determined to be 0.188 for random discontinuous fiber
composites and 0.376 for continuous aligned fiber
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composites. Above K ¥, no pseudo strain-hardening
occurs, and the composite fails catastrophically with a
single large fracture. Thus, for design of composites
with enhanced strain capacity, it is important to ensure a

K value below K%,

The K condition for pseudo strain-hardening
may be translated into physically meaningful
requirement of the fracture toughness induced by fiber
interfacial debonding G, (Appendix 1):

8 Gip 2
— — CA
I—(' = 3‘\/% G,- < I?cril = 3'\/E (13)
10 Gip ™ L R
Wn G, 3Wn
Thus
4 A
G > ¢ (14)
Gp 10 DR

Eqn (14) expresses the need for high bridging
toughness relative to crack tip toughness for pseudo
strain-hardening. It implies the requirement of sufficient
energy absorption through frictional work at the
fiber/matrix interface. For design applications, it is
useful to re-express (14) in terms of the critical fiber
volume fraction:

VeV = (15)

Equation (15) then replaces (3) which is based on
the Rule of Mixture. Note that (14) and (15) clearly
reflects the importance of the crack tip and therefore the
matrix toughness in the condition for pseudo strain-
hardening. The required fiber volume fraction increases
for a matrix of higher fracture toughness. It may
therefore be expected that pseudo strain-hardening in
ceramic matrix composites will be more difficult to
achieve when compared to cementitious matrixes
because of the higher inherent matrix toughness in
ceramics.

Table 1: Constants used in the Eeneralized form for CA and DR cases.

Co C; Cz C3 Cq Cs Cs Cy Cs Co
CA 0 2 23 0 173 0 6 1 0
DR 2 1 12 4/3 12 23 12 48/g 2g g
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FIG. 5. First crack strength and bridging stress at crack center.
Conditions for steady state cracking require these curves to meet,
i.e. for both continuous aligned (solid lines, labeled CA) and
discontinuous random (dashed lines, labeled DR) fiber
composites.

It is interesting to note that while X ™ (or eqn. (14)
and (15)) defines the necessary condition for achieving
pseudo strain-hardening, sufficiency is not guaranteed.
In fact, Figure 5 shows that for initial crack size below
cs, the first crack strength can be higher than the
maximum fiber bridging stress (i.e. Of /g > 0p or
G /g > 1). In that case, the spreading of the matrix

crack is accompanied by fiber breakage for aligned
continuous fiber composites and fiber pull out for
random discontinuous fiber composites. This implies
that pseudo strain-hardening must occur if the initial
crack size is larger than cg, in addition to the requirement
expressed through eqn. (14) or (15) (Actually, there is a
small range of ¢ < c,, for which multiple cracking is
guaranteed, see Li and Leung, 1992).

From (15), it would seem like that for any given ©
and L, /dg, aVf™ can be computed. Unfortunately, this
is not the case. This is because G, does not increase
monotonically with V; (see Figure 6). [Note that G,
scales with V¢ 5%, and &" scales with (1-Vy), see
Appendix 1]. At high fiber volume fraction, despite
higher bridging stress, the amount of crack opening 5
and therefore frictional work is in fact reduced, so that
eqn. (14) is not guaranteed to be satisfied. The auxiliary
condition may be obtained by requiring (15) to yield a
real solution for V¢, leading to
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3
(¢}
e CA
A<i 1 . (16)
2
1(Lf/df) DR

24(1- v )Ef(1+ n)K2E. ,
where A= o) 7 , and Vr must
E,dfVr g
satisfy the following equation:
’ ’ aEc
Vi | Ec(Ef — Ep)+ (1+ MWV Epy " )

1
=(1+ n)EmEc(l - 2Vf')

For CA composites, using Rule of Mixture for E.,
(16) can be reduced to

3 2 2
Gfu 296Ef Km
T Emzdf

(18)

In the case of random discontinuous fiber
composites, (16) puts a lower limit on fiber aspect ratio
and interfacial bond. In the case of continuous aligned
fiber composites, (16) puts a lower limit on fiber strength
and upper limit on interfacial bond.

FIG. 6. Schematic representation of frictional debonding energy
vs fiber volume fraction.

STEADY STATE CRACK STRENGTH

The steady state crack strength may be obtained by
evaluating the first crack strength (eqn. 10) at the
transitional crack size (Li and Leung, 1992), i.e.
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G, =6p(C=¢)

= Csfts — Cols (19)

where C, has been defined in terms of K in (12). From

the above discussion, the steady state crack strength
corresponds to the load bearing capacity in the long
crack limit and is therefore always smaller than the first
crack strength when ¢ < ¢;. These strength properties
have been computed assuming for convenience that the
crack shape remains elliptical, even in the presence of the
fiber bridging effect. More accurate numerical
computations without such an assumption show that the
steady state crack strength for continuous aligned fiber
composites is overestimated by about 20% (Marshall,
1985). Apart from this numerical difference, Eqn (19)
reproduces the results of Aveston et al (1971) and
Marshall et al (1985) for the case of continuous aligned
fiber composites, and those of Li and Leung (1992) for
the case of discontinuous random fiber composites.

A DESIGN EXAMPLE

Eqns (15) and (16) provide design rules for pseudo
strain-hardening. It turns out that even for random
discontinuous fiber composites, high fiber volume
fraction is not necessarily an absolute requirement,
provided other parameter combinations are chosen
properly. This concept is demonstrated with a cement
matrix reinforced with random discontinuous polymer
fibers.

As revealed in equation (15), low matrix toughness
and high aspect ratio are in favor of low critical fiber
volume fraction necessary for multiple cracking. In
addition, equation (16) should also be satisfied in order
to yield a real solution of eqn (15). A high modulus
polyethylene fiber (Spectra fiber, Allied Corporation)
and low toughness cement paste are selected for a model
composite to test the validity of (15) and (16). Table 2
summarizes the micromechanical parameters used in this
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system. Detailed descriptions and experimental
procedure will be presented in a separate paper (Wu and
Li, 1992). V#7#is computed to be as low as 0.3% by
volume. As shown in Figure 7, similar to the matrix
alone, the composite with V=0.1% demonstrates a
catastrophic failure. In contrast to this, the composite of
V1% shows a significant ductility as well as enormous
fracture toughness. Clear sub-parallel cracks were
recorded from the specimen surface, as shown in Figure
1c.

In Table 3 the first cracking strength, G, and steady
state strength, G, of discontinuous random Spectra fiber
reinforced cement with four different fiber volume
fractions are summarized. Two different values of
snubbing factor are used. Limited data are published for
polypropylene fiber (g=1.78 ) and nylon fiber (g=2.31)
(Li et al, 1990). When snubbing effect is inactive, g
resumes one. The actual strength improvements are
found to be less than predicted. This is perhaps due to
increasing difficulty in uniform mixing and poor
workability as Vy increases. On the other hand, if the
predicted steady state strength o, is reduced by 20% due
to the crack shape effect discussed earlier, they would be
reasonably close to the experimentally measured values.
As expected, significant ductility improvements were
found for the three composites with Vy > V£ (Figure
8). The ultimate strain €., for the composites with
pseudo strain-hardening is approximately 220 times that
of those without strain-hardening.

DISCUSSIONS AND CONCLUSIONS

This paper reviews the conditions under which brittle
matrixes such as cement and ceramics can be made to
behave more like metallic materials which exhibit strain-
hardening when loaded beyond the yield point. These
conditions are derived in a unified manner for both
continuous and discontinuous fiber composites. The
physical interpretations of the necessary and sufficient

Table 2: Micromechanical parameters used in this study.

Fiber & L E  Mamx &, K T Ve
(um) (mm) (GPa) (GPa) (MPaym) (MPa) (%)
Spectra 38 12.7 120 OPC paste 15 0.2 1.0 0.3
— Table 3: First cracking and steady state strengths of ra fiber reinforced cement.
V. %) 5, (MPa) G_ (MPa)
Expt Pred Expt Pred
g=1 g=2 8= 1 g=
0 16 n » . n »
0.1 17 1.68 1.74 - . .
1 - - - 22 1.5 24
. ; . 2.4 2.5 4.1
3 . . - 2.5 34 56
B ——— —
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FIG. 7. Experimental stress-strain curves for discontinuous random Polyethylene fiber reinforced cement with various fiber volume fraction. Insert

shows complete curves.

conditions for pseudo strain-hardening are highlighted.
Specifically, the analyses reveal the importance of the
G,/Gjp ratio, for both the CA and DR cases. The
conditions (eqn. 14,15) discussed in this paper, based on
fracture mechanics principles, are dramatically different
from those obtainable from the Rule of Mixture (eqn 3).
In addition, auxiliary conditions (eqn 16) on fiber
strength, bond properties and aspect ratio, not considered
in previous works, are now revealed.

10 T T T T T T
] ° °
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FIG. 8. Significant ductility achieved when V> V,¢7it

(Vf' i-03%) for discontinuous random Polyethylene fiber
reinforced cement.

Eqn (16) is the necessary condition for achieving
multiple cracking. When this condition is violated, (14)
and (15) cannot be satisfied regardless of Vy. This
implies that for very high fiber volume fraction, pseudo
strain-hardening can in fact be suppressed even though
the composite strength may begin to approach the
maximum bridging strength o, of the reinforcing fibers.
Future experimental investigation is necessary to confirm
this observation. ,

Eqn (15) suggests that V"™ can be much higher for
DR than for CA composites. As an example, for the same
Spectra fiber/OPC paste, used in this paper, V/"* is only
0.001% for CA (0, =2600 MPa) versus 0.3% for DR
composites. For a typical steel fiber used in cement
reinforcement (E;=200 GPa, T =5 MPa, d;=250 um, Ly
=12 mm, Gf, =600 MPa, K, =4 MPa/m , and E,, =20
GPa), V/ ™ is 0.4% for CA versus 9% for DR
composites. Hence adequate reinforcement for pseudo
strain-hardening is more readily achieved for CA
composites, as reflected in the literature where evidence
is abundant. Nevertheless, with proper design, pseudo
strain-hardening is also achievable for DR composites, as
demonstrated in this paper.

The discussions in this paper have been based on
simple fiber/matrix interaction models. However the
formulation is general enough that it can be extended via



398 Li and Wu: Pseudo strain-hardening

modification of the ¢(d) relationship to include, for
example, interfacial elastic bond, and elastic mismatch
between fibers and matrix.

Although pseudo strain-hardening data for
discontinuous random fiber composites are limited, the
consistency between results for continuous and
discontinuous systems, and the demonstration with
Spectra FRC discussed in this paper, lend confidence to
designing discontinuous fiber reinforced brittle matrix
composites with enhanced strain-capacity.

ACKNOWLEDGMENT

This research has been supported by a research grant
from the National Science Foundation (Program
manager: Dr. K. Chong) to the University of Michigan,
Ann Arbor. Comments by D. Marshall and S. Shah led
to many useful improvements in this manuscript. Photo
courtesy of Dr. D. Marshall (Fig 1a) and Dr. S. Akihama
(Fig 1b) are gratefully acknowledged.

REFERENCES

Akihama S, Suenaga T, and Banno T (1984) Mechanical
Properties of Carbon Fiber Reinforced Cement Composite
and the Application to Large Domes, Kajima Institute of
Construction Technology, KICT Report NO. 53, Tokyo,
Japan.

Aveston J, Cooper GA, and Kelly A (1971). Single and
Multiple Fracture, in the Properties of Fiber Composites,
Conf. Proc., IPC Science and Technology Press Ltd., 15-24.

Bentur A and Mindess S (1990). Fiber Reinforced
Cementitious Composites, Elsevier Applied Science.

Brock D (1986). Elementary Engineering Fracture Mechanics,
4th Edition, Martinus Nijhoff Publishers.

Budiansky B, Hutchinson JW, and Evans AG (1986). Matrix
Fracture in Fiber-Reinforced Ceramics, J. Mech. Phys. Solids
Vol. 34, no. 2, 167-189.

Krenchel H and Jensen HW (1980). Organic Reinforcing Fibers
for Cement and Concrete, in Fibrous Concrete, The Concrete
Society, Proceeding of the Symposium on Fibrous Concrete,
Lancaster, The Construction Press.

Laws V (1987). Stress/Strain Curve of Fibrous Composites, J.
Mater. Sci. Letters, 6, 675-678.

Leung CKY and Li VC (1989). First-Cracking Strength of
Short-fiber Reinforced Ceramics, Ceramics Eng. Sci. Proc.,
9/10,1164-1178.

Li VC and Leung CKY (1992). Theory of Steady State and
Multiple Cracking of Random Discontinuous Fiber
Reinforced Brittle Matrix Composites”, accepted for
publication in ASCE J. of Engng. Mechanics.

Li VC and Wu HC (1992) Pseudo Strain-Hardening Design in
Cementitious Composites, in Proc. of International
Workshop on High Performance Fiber Reinforced Cement
Composites, Ed. H. Reinhardt and A. Naaman, Chapman and
Hall, 371-387.

Li VC, Wang Y, and Backer S (1990) Effect of Inclining
Angle, Bundling, and Surface Treatment on Synthetic Fiber
Pull-out from a Cement Matrix, Composites, Vol. 21, 2, 132-
140.

Appl Mech Rev vol 45, no 8, August 1992

Marshall DB and Evans AG (1985). Failure Mechanisms in
Ceramic-Fiber/Ceramic-Matrix Composites, J. Am. Ceram.
Soc., Vol. 68, No. 5, 225-231.

Marshall DB, Cox BN, and Evans AG (1985). The Mechanics
of Matrix Cracking in Brittle-Matrix Fiber Composites, Acta
Metall. Vol.33, no. 11, 2013-2021.

Marshall DB and Cox BN (1987). Tensile Fracture of Brittle
Matrix Composites: Influence of Fiber Strength, Acta Metall.
Vol.35, no.11, 2607-2619.

McCartney LN (1987). Mechanics of Matrix Cracking in
Brittle-matrix Fiber-reinforced Composites, Proc. R. Soc.
London, A 409, 329-350.

Miyajima T and Sakai M (1991). The Fracture Toughness for
First Matrix Cracking of a Unidirectionally Reinforced
Carbon/Carbon Composite Material, J. Mater. Res. Vol. 6,
No. 11.

Mobasher B, Ouyang C, and Shah SP (1991). Modeling of
Fiber Toughening in Cementitious Materials using an R-
Curve Approach, Int’l J. of Fracture, 50, 199-219.

Wu HC and Li VC (1992), in preparation.

Appendix 1: Derivation of frictional debonding energy,

r

The fracture energy due to fiber frictional debonding can
be computed from

*
o

G, = [os(8)as (A1)
0

where op is given by eqn (8), and &* is the maximum
crack opening at maximum bridging stress. Thus

G, = 2 (A2)



