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Abstract

New fundamental solutions which automatically satisfy boundary conditions at the
interfaces of an elastic plate perfectly bonded to two elastic halfspaces are implemented in a 3-D
Boundary Element Method (BEM) for crack problems. The BEM features a new integration
scheme for highly singular kernels. The capability is achieved through a part analytic and part
numerical integration procedure, such that the analytic part of the integration is similar for all
slip/opening variations. "Part-through" elliptic cracks in an elastic plate with traction free
surfaces are analyzed and the Stress Intensity Factor (SIF) values along the crack front are
found to compare favorably with widely accepted numerically obtained SIF results by Raju and
Newman (1979).

In ion

Numerical methods based on integral equations are often used in 3-D linear elastic fracture
mechanics as an alternative to the more popular Finite Element Method (Cruse and Vanburen
(1971), Cruse and Meyers (1977), Lachat and Watson (1977), Weaver (1977), Bui (1977),
Tan and Fenner (1980), Luchi and Rizzuti (1987)). Different integral equation formulations use
a variety of kernels or fundamental solutions such as point force and nuclei of strain elastic
fields. In addition, numerical implementations of the same formulation may make different
assumptions concerning the unknown displacements or displacement discontinuities and
tractions over the crack surface. In some cases the unknown field variables along the boundary
may be assumed to be continuous and differentiable while in other cases they may be assumed
to be piecewise continuous and differentiable with lines along which discontinuities may occur.
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Examples of integral equation based numerical methods are the Boundary Element Method,
Boundary Integral Equations Method and Body Force Method.

In some integral equation formulations, special kernels (or fundamental solutions) are used
which automatically satisfy boundary conditions on external boundaries. In such formulations,
discretization is only required on the crack surfaces. Elliptic and semi-elliptic cracks in a
halfspace with a traction free surface or in a region consisting of two bonded halfspaces have
been extensively studied using such specialized fundamental solutions (Murakami and Nemat-
Nasser (1982,1983) and Lee and Keer (1986)).

A common difficulty of integral equation formulations dealing with crack problems is the
accurate evaluation of singular integrals. The singular integrals encountered in 3-D crack
formulations vary with the fundamental solutions used. In classical boundary element
formulations, the singular integrals involved are of the principal value kind. Principal value
integration techniques have been dealt with by a variety of methods including semi-analytic
evaluations (Gerasoulis (1982)), mapping techniques (Luchi and Rizzuti (1987)), and
quadrature formulae (Krenk (1975), Theocaris et al (1980)). In the body force method, the
evaluation of singular integrals which are more singular than principal value integrals are
needed. The highly singular integrals are known as finite part integrals (Hadamard (1923),
Kaya and Erdogan (1987), Ioakimidis (1987)). Murakami and Nemat-Nasser (1982) described
a part analytic and part numerical method to evaluate these highly singular integrals, while Kutt
(1975) developed Gaussian-type quadrature formulas for one dimensional (useful in 2-D
problems) finite part integration.

This paper will present a numerical implementation of an integral equation formulation to
solve cracks in a plane layered region (figure 1). The integral equation formulation and
discretization will first be presented. The presentation will emphasize a new finite part
integration scheme. Next, some numerical stydies on circular and elliptic cracks in infinite
space will highlight the discretization requirements for accurate results. The studies will focus
on the region adjacent to the crack front. Finally, computed stress intensity factors for "part-
through™ semi-elliptic cracks in an elastic plate (upper and lower surfaces traction free) will be
used as an example of the capability of the method. The resulting “part-through” crack results
are found to compare favorably with the widely accepted Finite Element solutions by Raju and
Newman (1979) of the same problem.

Description of the Method

The present numerical method can be formally classified as either an indirect Boundary
Element Method (Brebbia (1978)) or a 3-D Displacement Discontinuity Method (Crouch
(1976)). The required fundamental solutions correspond to nuclei of strain elastic fieldsin a
layered medium with two interfaces. The nuclei of strain elastic fields in such media were
recently derived by Fares (1987). The advantage of using the specialized nuclei of strain
solutions is that the boundary conditions on the interfaces (shown in figure 1) are automatically
satisfied. Hence, only the crack surface need to be discretized. The method relies on the
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Figure 1: Layered elastic region with two interfaces containing a crack. Tractions T; and
displacement jumps Aj are defined over the surface Sc.

following integral representation of the stress Opq due to an applied stress cpqappﬁed and a
distribution of opening and sliding (A,) on a crack surface S ;:

applied
o @=c (;o-SJ'd;“og.x)-n}(x)-Ai(x)-ds ®

where the fundamental solution Gjipq(x,x') is the stress at a point X due to a nucleus of strain in

a layered medium at point X', and n*(x) is the vector normal to the upper crack surface. The
integral in (1) is carried out over the crack surface S.

The integral in (1) is well defined for any field point x in space not lying on the crack
surface. When a point x lies on S, the integral in (1) must be interpreted as an integral with the
limit of a point x" not lying on S approaching x. Moving the limit operator inside the integral
leads to a "finite part” integral in the Hadamard's sense. The discretization and numerical
solution of the singular integral equations obtained from (1) when boundary conditions

(involving Opq and Aj on S,) are given will be described next.

The opening and sliding Aj(x) along a crack surface (assumed planar) are parametrized with
respect to local coordinates in subregions of the crack surface. The subregions are defined by
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one or several straight edged triangles. Therefore the discretization assumptions allow
discontinuities in Aj® to occur along some line segments on S..

The piecewise definition of unknown field variables is common in Boundary (and Finite)
Element Methods. However the present implementation has two characteristics. First, the

unknown parameters discretizing Aj® are not associated with nodal values. Second, the shape
functions that locally define Aj()g are defined with respect to real space (possibly rotated and
translated) coordinates instead of parametrized coordinates. These characteristics allow the
implementation of crack front subregions (or elements) in the following way. Assume a crack
lies in the plane z=0. The orientation of the local y-coordinate system at triangles containing a
segment of the crack front are chosen to be perpendicular to the crack front. Aj()_() at the border
regions is then parametrized as a polynomial expression of (local) x and y multiplied by —\/}7
to obtain theoretically acceptable crack front opening or sliding variations.

Once the variation of Aj(_)_(_) is specified, boundary conditions are satisfied at a discrete
number of points (called collocation points). The number of collocation points should equal the
total number of parameters characterizing Aj®. If the boundary conditions are linear, an
algebraic system of equations is obtained whose solution yields the parameters used to
discretize Aj®. Once Aj()Q is known on S, displacements and stresses can be obtained at any
point in space and stress intensity factors can be obtained at any point on the crack front. The
stress intensity factors Ky, Ky; and Ky are obtained using the classical asymptotic relations
between crack opening near a crack tip and the value of stress intensity factors for plane strain
(in the case of Ky and K}p and antiplane (in the case of Kpp deformations. In setting up the

above discussed system of equations, a discretized version of the integrals in (1) have to be
evaluated and will be discussed next.

The kernels Gjipq(x_,g') in (1) are given in Fares (1987). The singular part of the kernels
used in the case of tensile cracks are the same as the infinite space tensile cracks kernels used in
the body force method by Murakami and Nemat-Nasser (1982). The method of integrating the
infinite space tensile crack kernels will be discussed in this paper. A similar approach may be
adopted in treating the singular kernels for the shear case. Details of the integration schemes are
discussed in Fares (1987, see especially appendix Q).

The integrals in the case of the infinite space tensile cracks are of the form:
rS

li_f.no J;.‘J‘f(x, y): [—:;— 3. 22, l]- dxdy @

where f(x,y) is a smooth function, S, is a planar surface with z=0 and 2=x2+ y2 +2z2,
The above form can be applied to an arbitrary planar surface by defining conveniently
translated and rotated local x,y,z coordinates.
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If the origin does not lie on S then the integral (2) is not singular and an integration scheme
similar to that described by Murakami and Nemat-Nasser (1982) is used. If the origin lies on
S, then integral (2) is a finite part integral and is treated in the following manner. First f(x,y) is
represented as the sum of the Taylor expansion of f(x,y) around the origin up till parabolic
terms plus a residue (say £ (x,y)). The residue f (x,y) multipied by the kernel is non-singular
and can be treated using regular quadrature methods. The constant, linear and parabolic terms
of the Taylor expansion of f(x,y) multiplied by the kernel in (2) are each transformed into the
sum of two non-singular line integrals which are evaluated numerically and a one-dimensional
finite part integral which is evaluated analytically. For example, the constant term (taken to be
unity) is transformed by the following steps:

: 1 _,. z.i], - x=R x+R
ll-r.nofj[rs 3-2 el dxdy J‘* y’R dy+f _ ¥R dy
s, c c

y
T =r 2.2z2 _ 1 . 3)
2 ll_I'HOJ‘ [(y2+ 22)2 y2+ zz] dy

min

where R2 = x2 + y2 and Ymin a0d ¥, are depicted in figure 2. Note that (xR)/y’R are

Figure 2: Integration region used to illustrate the finite part integration scheme.

the limits as z->0 of indefinite integrals with respect to x of 1/r> such that the line integrands in
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(3) are nonsingular. However, both line integrals in (3) have removable singularities (the
integrands tend to a finite limit) when they cross the y=0 axis. The last integral in (3) contains
the terms that were subtracted or added to the first two line integrals to make them non-
singular. This last integral can be evaluated analytically as a non-singular integral if the limit
operation is performed after integration or as a finite part integral if the limit operation is
performed before integration. In any case the evaluation of the last integral gives:

11
-2 [———— @)

ymax ymin

Numeri

In this section, the discretization requirements for accurate stress intensity factor (SIF)
results will be investigated afterwhich a few example problems will be solved. For the
discretization requirements studies, the crack considered is circular and lies in infinite space
under mode I loading. The analytic solution of this problem is known (e.g. Tada et al (1973)).
Two aspects of discretization near the crackfront region will be investigated. These aspects are
the choice of the orientation of lines along which AJ()Q may be discontinuous and the effect of
approximating a non-straight crack line with straight line segments.

Consider a penny shaped crack discretized into identical angular sectors. Two different
subdivisions of a representative sector into triangles is shown in figures 3a,b. In figure 3a,

(a) (b)

Figures 3a,b: Two different types of discretization of a representative sector of a penny shaped
crack. See text for details.

triangles 1-6 have 4/ Y. and Y, * +/ Y. opening variations (with two parameters specifying
the magnitudes) such that triangle 1-2, 3-4 and 5-6 have local axis 1, 2 and 3 respectively.
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Triangles 7,8 and 9 and triangle 10 have parabolic variation in ¥y, (local axis 4) which implies
a total of 8 parameters used in the discretization corresponding to figure 3a. Figure 3b is

similarly discretized with 8 parameters. \/y_x. and ¥y - \/f opening variations are
specified over triangles 1-5 such that triangles 1-2, 3 and 4-5 have local axis 1, 2 and 3
respectively. Triangles 6, 7 and 8 and triangle 9 have parabolic variation in y, (local axis 4) in
figure 3b. The number of line segments used to discretize the crack boundary is the same (24
segments) in both figures 3a and 3b. The only difference between the discretization of figures

3a and 3b is that the lines along which AJ® can be discontinuous lie perpendicular to the crack
boundary in figure 3a whereas they lie at an angle to the boundary in figure 3b.

The errors in the SIF obtained are 6.1% and 9.8% for figures 3a and 3b respectively. By
increasing the number of line segments used to discretize the crack front (with the same number
of parameters), the error in a discretization similar to figure 3a can be reduced to less than 1.5%
while that error remains above 5% in a discretization scheme similar to figure 3b. Therefore, in
order to obtain accurate results using the present scheme, near the crack front it is necessary to

orient lines along which AJ(;) can be discontinuous to lie perpendicular to the crack boundary.

The errors in SIF as the number of line segments discretizing the crack front increased
(using the subdivision method of figure 3a with a total of only 8 parameters) is as follows.
Corresponding to 24, 36, 48, 72 and 96 line segments the errors in SIFs are 6.1%, 4.8%,
2.5%, 1.8% and 1.2% respectively. Using Gao and Rice's (1987) results to estimate the
average first order variation in SIF due to the straight line segments’ discretization of the crack
boundary we obtain:

100 %2
% emor ~ g, &)

Using (5), the percent errors in SIF for 24, 36, 48, 72 and 96 line segments are 5.1%,
3.4%, 2.6%, 1.7% and 1.3% respectively. The numerical results are consistent with the
theoretical estimates. This study shows that the convergence rate of the average SIF ata
straight line segments' discretization of a curved boundary to the SIF at the curved boundary is
very slow. However, preliminary studies show that if the discretization allows SIF to vary
along the straight line segments, the SIF at the midpoint of the segments converges faster to the
SIF at the corresponding points on the curved boundary than do the corresponding average

values. Hence, in the examples to be presented next, the parameters used to represent Aj®

allow the SIFs to vary at least piecewise linearly along the crack front and only midpoint SIF
values are reported.

The first example problem is an elliptic crack in infinite space with an aspect ratio of 2 to 1
under tension. The discretization of a quarter of the crack is shown in figure 4 (with symmetry
assumed). The lines along which Aj(x) can be discontinuous have been carefully chosen to lie
perpendicular to the boundary (i.e. the common segments between triangles 2-3, 4-5, 6-7 etc.).
54 parameters {(degrees of freedom) were used to obtain the results of figure 5. The analytic
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Figure 4: Discretization of a representative quadrant of an ellipse with aspect ratio 2:1.
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Figure 5: Comparison of numerically obtained Stress Intensity Factors of the elliptic crack in

infinite space problem with exact analytic solutions (e.g. Tada et al, 1973). a/c = 0.5 and 6
is as shown in the insert.
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Figure 7, 8 and 9: Comparisons of numerically obtained Stress Intensity Factors of "part-
through" cracks in a plate using the present Boundary Element Method scheme with widely
accepted Finite Element results by Raju and Newman (1979). The agreement is good in all
three cases with a/H = 0.2 and a/c = 0.4, 1.0 and 2.0 corresponding to figures 7, 8 and 9

respectively (0 is as shown in the insert).
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results are from Tada et al (1973). Note that good accuracy has been obtained in spite of the
coarse discretization used in the inner region of the crack.

Finally, using this BEM, SIFs of "part-through" semi-elliptic cracks in a plate will be
presented. These examples show the BEM implementation of nuclei of strain elastic fields in a
layered region with two interfaces. The rigidity of the upper and lower halfspaces are set to
zero to obtain traction free surfaces. For conciseness, one penetration depth and three aspect
ratios of semi elliptic cracks will be considered. Referring to the inserts in figures 7, 8 and 9,
the penetration depth a/H = 0.2 and the aspect ratios a/c = 0.4, 1.0 and 2.0 respectively. Figure
6 is an example of the geometric discretization used and corresponds to aspect ratio a/c = 2.0.
The number of line segments discretizing the crack fronts are 9, 13 and 13 line segments per
quadrant corresponding to the results shown in figures 7, 8 and 9 respectively with a total of
46, 67 and 67 parameters (degrees of freedom) respectively. No effort has been made to
resolve the singularities near the intersection of the crack surface with the traction-free
interface. The results show reasonable agreement with the widely accepted Finite Element
solutions by Raju and Newman (1979).

Conclusion

An indirect BEM implementing recently derived nuclei of strain elastic fields was used to
solve crack problems in infinite space and in a plane layered media. The formulation presented
a new finite part integration scheme. Numerical studies on circular cracks were used to
determine the discretization requirements. "Part-through" elliptic crack problems in an elastic
plate were solved to show the capability of the method. Comparison with available 3-D Finite
Element solutions provide confidence in the accuracy of the present BEM.
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