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ABSTRACT: A novel technique based on the J-integral is employed to
experimentally determine the tension-softening (0-8) relations in
cementitious composites. The 0-8 relation provides information on
fracture resistance and could be used for numerical simulations of
crack formation and propagation in structures constructed from
materials which exhibit tension-softening behavior. The present
method requires no complicated modifications of testing machines. 1In
the experiment, pre-notched specimens with slightly different notch
lengths are used. The corresponding values of load, load point
displacement and crack tip separation are simultaneously recorded.
From these experimental data, the J-integral as a function of crack
tip separation as well as the tension-softening curve can be deduced.
These curves also provide a measure of the critical energy release
rate and hence fracture toughness of the tested material. The
experimental technique has been verified numerically for both the
compact tension configuration and for the 4-point bend beam
configuration. Applications of this test method to plain mortar, and
mortar reinforced by steel, acrylic and Kevlar fibers have been
performed and found to provide reasonable results. Limited
comparisons with test results from direct tension test method and the
RILEM-recommended Gp-fracture test method are also presented. A
summary of the current status of the J-based test method is included.

1 INTRODUCTION

Concrete is used worldwide as a structural material. Due to its low
tensile strength and susceptibility to cracking designers have
conventionally assumed zero tensile strength and have just used the
compressive strength as a basis for design. However, the realization
that tensile properties play a key role in the phenomena such as
shear punching, bond crack resistance and size effect have led to
dramatically increased research in this area in recent years.

Strength and ductility are two very desirable properties of a
structural material. It is generally agreed however, that as the
strength of a cement-based material is increased, its ductility
decreases. Recently, very high strength concretes have been produced
by the addition of silica fume, fly-ash or superplasticizer to the
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cement matrix or by pressure application after casting. 130 MPa
concrete (almost four times as strong as conventional concrete) has
been used on Seattle's Two Union Square building. This development
raises the question of how brittle is this almost new material
compared to conventional concrete and how will it behave when
subjected to stresses which are not purely compressive.

Experience has shown that the failure stress of concrete structures
shows a general decrease as structural size is increased. Also,
larger structures tend to be characterized by more sudden and energy-
packed failures. Most design codes have not accounted for this
phenomenon because of the lack of an adequate explanation for it.

Fiber reinforced concrete is generally distinguished from plain
concrete, not by any significant change in tensile strength, but
rather by its ability to absorb much larger amounts of energy, its
greater resistance to crack propagation, its ability to withstand
large deformations and its overall ductility. This distinction is
not adequately reflected in conventional test data such as a pre-peak
stress-strain curve.

A common thread connecting the above mentioned phenomena is that,
while conventional "strength" theories fail to provide adequate
explanations, a fracture mechanics approach is useful in each case.
Fracture mechanics relies on a very important material characteristic
generally known as fracture resistance. When attempting to define
fracture resistance it is necessary to have some understanding of the
physical processes which lead to fracture in a material such as
concrete. When loaded in tension the material follows a stress-
strain curve up to the maximum load at which point the deformation
localizes onto an eventual fracture plane. Once a macroscopic crack
has formed microcracking in the cement paste and in the cement-
aggregate interface as well as aggregate and fiber pull out where
applicable dissipate the energy which is responsible for the
propagation of the macrocrack. This zone of inelastic deformation,
often referred to as the process zone, appears to be rather planer or
the macroscopic scale. If this deformation at the crack tip is
confined to a small region (relative to the crack size and the
specimen dimensions) and if the material outside the process zone
behaves elastically, then it is possible to use LEFM. In such a cas
the fracture toughness K. could be used as a measure of fracture
resistance and the energy release rate G, could be found from G, =
K /E. However it is very unlikely that cracking in concrete obeys
the LEFM assumptions unless the specimen is very large. Hillerborg
(1983) shows that for 3-point bend specimens, beam depths of less
than 1-2 m would give invalid Ky, results. Kp. values obtained from
tests on laboratory sized specimens show some kind of size dependenc
with larger values obtained for large size specimens. Thus it is no
normally possible to use a laboratory measured Ky, value as a
fracture resistance parameter which is a true material property. Fo
this reason it is necessary to look outside LEFM for a measure of
fracture resistance which depends only on the material. The
constitutive relationship between the tensile stress transferred
across a crack plane and the separation distance of the crack faces,
generally known as the tension-softening (0-3) curve is a material
property. A number of parameters may be calculated from this curve.
The maximum stress value is the tensile strength, £, the maximum
separation distance is the critical crack opening, Sc’ at which a
real crack is formed and the area enclosed by the curve represents
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the energy required to create a unit area traction-free crack.

The 6-0 curve may be obtained from a direct tension test. However,
an inherent difficulty associated with the test is that the defor-
mation is unstable unless a very stiff testing machine is used which
is not available in most laboratories. Successful tests have been
performed using mechanisms such as parallel steel bars in the direc-
tion of loading and closed loop feedback systems by Petersson (1981),
Gopalaratnam and Shah (1985), and Reinhardt (1984). Despite this,
the rather intricate modifications required prevent this from
becoming a standard testing procedure. This paper reviews an
indirect J-integral technique which has been used by Li and co-
workers (1985), (1987), Leung and Li (1988), and Ward et al (1988) to
experimentally determine the 0-8 curve and which requires only an
ordinary testing machine and a simple testing procedure. These are
important characteristics of any test method which is to be
universally adopted. A 0-8 curve for Kevlar reinforced mortar is
deduced by this indirect method and a comparison is given with a
curve obtained from a direct tension test. Other deduced curves for
plain mortar and mortar reinforced with steel and acrylic fibers are
described. Also some refinements of both the experimental procedure
and the data analysis are suggested which are expected to lead to
greater accuracy in the deduced tension-softening curve.

2 THEORETICAL BASIS QF J-INTEGRAL TECHNIQUE

The path independent J-integral is defined as:

du
(1) J= _fr(wdy ~T——ds J

where I' is a curve surrounding the notch tip, W is the strain energy
density, T is the traction vector in the direction of the outward
normal along T, u is the displacement vector and ds is an arc along
' From Eq. (1) Rice (1968a, 1968b) produced two alternative
definitions of J. He used the Barrenblatt approach which considers a
cohesive zone ahead of the crack tip in which the restraining stress
0(0) is viewed as a function of separation §. If the J-integral is
evaluated along a contour Fl, shown in Fig. 1, which runs along
beside the cohesive zone, then we get

dd
2 J= ; c (5)a;dx
cohesive
zame

This definition may be interpreted as follows. If the crack
opening at each point in the cohesive zone increases by an amount dd
then the profile of the cohesive zone boundary extends a distance dx.
The quantity o(8)dx is the force over each infinitesimal area and
o(8) dx d6 is the energy absorbed during increased separation d§.

Thus Eq. (2) defines J as the rate of energy absorption with respect
to cohesive zone propagation. Eq. (2) may also be expressed as

5
3 J=J0t06) ds
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T

8 = separation distance
o(8) = stress transferred

Fig. 1 Cohesive zone ahead of the crack tip.

where 8, is the separation distance at the crack tip. When &
reaches 8c the real crack propagates and a critical J-integral value,
Jeo 1s reached

5
(9 3.=] 06 ad

Jo 1s equal to the total area under the 6-80 curve and may be
interpreted as the rate of energy absorption in the cohesive zone
with respect to crack tip propagation.

The second interpretation of J (Rice, 1968) may be given as:

A PE)
(5) J=- oa
where PE is the potential energy of a body with crack length a. Thus
J is equal to the rate at which the potential energy of a cracked
specimen decreases as the crack propagates.

The basis of our indirect J-integral technique of finding the 6-8
relationship is to find J experimentally using Eqg. (5) and then to
substitute into Eq. (3) and find o(8). Potential energy may be
calculated simply from a load-displacement curve. However, since the
crack tip position is difficult to locate accurately, it would be
almost impossible to directly evaluate Eq. (5) by propagating a crack
in a single specimen. One approximate procedure for getting around
this problem is to use two cracked specimens identical in every
respect except that there is a slight difference in their initial
crack lengths. If the load-load point displacement (P-A) curves are
measured for each specimen, then the area A(A) between the two
curves up to a load point displacement A represents the difference
in energy and Eq. (5) may be interpreted as:

A(A)
B(Aa)

6 JA=

where Aa is the difference in crack lengths and B is the specimen
thickness. 1If, during the experiment, the crack tip separation, &,
is also measured then it is possible using the A-§ relationship to
convert J(A) to J(@). Differentiation of Eq. (3) then gives
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and the tension-softening curve may be determined from the slope of
the J(8) curve.

(7 o=

3 NUMERICAL VERIFICATION OF TEST TECHNIQUE

This method has been verified numerically for both beam bending and
compact tension configurations. A. Hillerborg (private
communications, 1985) provided verification by employing his
fictitious crack model in a finite element scheme to simulate the
load-load point displacement curves and load-crack tip separation
curves of a pair of three-point bend specimens of slightly different
crack lengths. He used an artificial bi-linear curve as input for
the tension-softening behavior in the material ahead of the crack
tips. The objective of the exercise was to extract the same curve
using the indirect J-integral technique with his numerically derived
'test results'. The extracted curve essentially overlapped the
initial assumed curve, thus verifying the theoretical basis. Reyes
(1987) used a boundary element method to carry out a similar
procedure with a compact tension configuration. Again the input
curve and the extracted curve showed excellent agreement .

The theoretical basis and numerical verification confirm that this
test technique is independent of specimen geometry and should also be
independent of specimen size. The only restriction on specimen size
is that the smallest specimen dimensions should be a number of times
larger (maybe four or five times) than the largest single particles
in the material. Thus minimum dimensions depend on material
properties such as aggregate size and fiber length.

4 EXPERIMENTAL RESULTS

This technique has been used with both the compact tension and the
four-point bend beam configuration shown in Fig. 2. 1In order to
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Fig. 2. Specimen configurations used with J-integral test
demonstrate the mechanics of the method, a set of experimental

results is given and the deduced tension-softening curve is compared
with a curve obtained from a direct tension test. The material used

187



is fiber-reinforced mortar with a water : cement : sand ratio of
0.5 : 1 : 1 and containing two percent by volume of 6.35 mm Kevlar 49
fibers. The use of fibers ensured that it was relatively easy to
obtain a stable direct tension test result. The four-point bend beam
configuration was used with a short crack length, a; equal to 57.15
mm and a long crack length, a; equal to 63.5 mm. The notches were
cut with a 1.5 mm thick diamond blade, one day before testing. Crack
guides, 6.35 mm deep, were cut on each side of the beam s0 as to
confine the propagating crack to a vertical plane ensuring Mode I
fracture. Without these crack guides, the crack may sometimes deviate
quite considerably from a vertical path especially when fibers are
present in the material. As a preliminary investigation into the
behavior of this composite only two beams were tested for each crack
length compared to a usual minimum of four.

Fig. 3 shows the average load versus load point displacement curves
for each crack length. Fig. 4 shows three different average crack
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Fig. 3. Average load versus load point displacement curves.
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Fig. 4. Load point displacement versus crack opening curves.
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opening values, 8;,8,, and 83 , expressed as a function of load
point displacement. g was measured at the initial crack tip of the
short cracked beams, %2 at the initial crack tip of the long cracked
beams, and53 at a point 6.35 mm (equal to Aa) above the crack tip in
the short cracked beams. Previous experimental programs have used

8 = (81 + 82)/2 as the average crack opening value. Closer
examination of the experimental procedure indicated that the use of
83 in place of d; may be more correct. From Fig. 4 it may be
observed that by using 8 = (87 + 83)/2 instead of the previous
definition, the deduced stress is higher for the initial part of the
68 curve and lower over the central part. As will be seen later,
this leads to an improvement in the accuracy of the deduced curve.
More tests are required to establish the best definition of &§. Using
numerical integration, a J-A relationship was calculated as shown in
Fig. 5. Numerical differentiation of the J-8 curve was achieved
using Taylor expansions at five consecutive points J(8-g), J(3-h),
J(8), J(d+3), J(d+k) and solving for J'(d). Fig. 6 shows the deduced
tension-softening curve. It shows an initial rise from 0=0 to o=f¢
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Fig. 5. J-integral versus crack opening curve.
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Fig. 6. Deduced tension softening curve.
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before descending back down to ¢=0. This initial ascending part may
be interpreted as the sum of recoverable elastic deformation and
inelastic deformation caused by microcracking prior to the
localization of deformation onto the fracture process zone and

the refore should not be regarded as part of the 6-0 relationship.
Figure 7 shows the corrected 0-3 curve as well as the curve obtained
from the direct tension test. Considering the limited number of
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Fig. 7. Comparison between directly measured and deduced
tension-softening curves.

tests carried out, the agreement is reasonably good. The deduced
tensile strength is 3.35 MPa compared to a directly measured value of
3.95 MPa. This underestimation is consistent with previous test
results and some explanation for it as well as some refinements which
may reduce the error are discussed in the next section. The critical
J-integral value, J, is 1485 N/m com- pared to the directly measured
value of 1250 N/m. This error can be attributed mainly to the small
number of tests and could be largely eliminated by carrying out four
or five tests for each crack length. Fracture energy was also
calculated in accordance with the RILEM-recommended G method using
the curves in Fig. 3 and Gp defined as:

A

®) Gg= B(d-a)

where A is the total area under the load versus load point
displacement curve including an approximate correction for energy
supplied by the self-weight of the beam as proposed by Petersson
(1981) and d is the overall beam depth. The calculated values were
1181 N/m and 1143 N/m for the short crack and long crack beams
respectively. These Gp values are less than the energy value
obtained from the direct test and this observation is the opposite of
test results obtained by Horvath and Persson (1984) who found Gp
values to be about 20% greater than direct tension results. Their
tests were carried out on plain concrete specimens in which the
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maximum beam deflections were of the order of 1 mm. In our tests
maximum recorded beam deflections were of the order of 5 mm with a
very long flat tail on the load-displacement curves. The self-weight
correction method attempts to estimate the area which would lie under
this long tail if the beam did not fail under self-weight and the
load gradually decreased to zero. It is possible that the correction
applied to plain concrete which has a relatively short tail is not
directly applicable to fiber reinforced concrete which has a much
longer tail. This may account for differences in the observed trend
when comparing plain and fiber reinforced concrete.

5 SUMMARY OF EXPERIMENTAL WORK

Initially a brief description is given of the various materials which
have been tested to date followed by a summary of the J-integral test
results.

Material #1 is mortar with a water : cement : sand ratio of 0.5 : 1

2., The compact tension configuration shown in Fig. 2 was used with
initial crack lengths of 35.56 mm and 43.18 mm. Four specimens were
tested for each crack length at seven days.

Material #2 is steel fiber reinforced mortar with a water : cement

sand ratio of 0.5 : 1 : 2 and a fiber volume fraction of one
percent. The fibers had length 9.525 mm and effective diameter
0.1524 mm. The beam bending configuration shown in Fig. 2 was used
with initial crack lengths of 44.45 mm and 54.61 mm. 5.1 mm crack
guides were used. Four specimens were tested for each crack length at
seven days.

Material #3 is acrylic fiber reinforced mortar with a water
cement : sand ratio of 0.8 : 1 : 2 and a fiber volume fraction of one
percent. The fibers had length 12.7 mm and diameter 14.2 pum. The
beam bending configuration was used with initial crack lengths of 42
mm and 50.5 mm. Eight specimens were tested for each crack length at
seven days.

Material #4 is mortar with a water : cement : sand ratio of 0.5 : 1

1. The beam bending configuration was used with initial crack
lengths of 42 mm and 50.5 mm. Eight specimens were tested for each
crack length at fourteen days.

Material #5 is similar to #4 except that a one percent volume
fraction of 6.35 mm long and 13.6 pm diameter acrylic fibers are
added.

Material #6 is similar to #5 except that the fiber volume fraction
is two percent.

Material #7 is similar to #5 except that the fiber volume fraction
is three percent.

Material #8 is the Kevlar fiber reinforced mortar described in the
previous section.

All the test results are summarized in Table 1 and the deduced
tension-softening curves are in Fig. 8. There is good agreement
between J, and Gp but the deduced tensile strength tends to be less
than the actual strength. A possible explanation for this tendency
is as follows. This J-integral method examines a portion of the
crack plane which extends a distance Aa between the positions of the
short and long crack tips. The deduced 0-8 curve represents the
average stress transferred across this area as a function of the
average crack separation. The loading configuration ensures that at
any given time during the test the actual crack opening at any point
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Table 1. Summary of J-Integral Test Results

Material* No. of Deduced Je Sc Direct Gp
Tests fe fe

(MPa) (N/m) (mre) (MPa) (N/m)
1. mortar 4 2.09 84 140 - -
2. steel FRC 4 2.80 1200 3700 3.0 -
3. acrylic FRC 8 1.78 187 700 - -
4. mortar 8 2.09 81 190 2.6 78
S. acrylic FRC 8 2.08 205 1100 2.6 209
6. acrylic FRC 8 2.01 404 1520 2.6 414
7. acrylic FRC 8 2.11 543 1340 2.6 607
8. kevlar FRC 2 3.35 1485 2300 4.0 1162

*For mix and fiber volume fraction and length, see text for details.
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Fig. 8. Tension-softening curves deduced by indirect J-integral techn

within the specified zone gets smaller as the point moves from the
initial crack tip towards the neutral axis. When the Aa zone is
transferring maximum load, the stress along some line within the zone
is equal to the tensile strength. At all other points the stress
transferred must be less than fy. Thus when the average stress
throughout the zone is calculated, it must be less than ft-
Theoretically this problem is solved by letting Aa approach zero.

In practice, however, there is a lower limit on Aa so that errors in
the measurement of initial crack lengths and in the loading machine
and instrumentation are not significant. In addition, Aa cannot be
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too small so that the assumption of a representative homogeneous
material for which the averaged mechanical property is being measured
is not violated. Experience suggests a lower limit of about 6 mm for
the beam bending configuration in Fig. 2. A possible extension of
the approach to date may be to use different Aa values in a given
test program and to extrapolate the J-8 or the 0-8 curve to obtain a
curve as da — 0. A variation of this possibility may be to use
similar Aa values, to vary the ratio Aa/(d-a), and to extrapolate
the resulting curves to find a solution as this ratio approaches
zero. The problem with these approaches is that the number of test
specimens required is considerably increased.

Another source of error in the final result is from the raw data
curves. Because this technique relies on measuring the difference
between two load versus load point displacement curves obtained from
cracked specimens with only a small difference in initial crack
lengths, any error in the measured curves results in a magnified
error in the difference between the curves. Concrete, and especially
fiber reinforced concrete, is a heterogeneous material and so there
is always some variation in test results obtained from supposedly
exactly similar specimens. 1In order to guard against the possibility
that a single exceptional test result may significantly affect the
final deduced tension-softening curve, a standardized approach has
been adopted for examining individual raw data curves and combining
them to produce average curves which are likely to give a good
result. Using each load versus load point displacement curve, two
values are calculated, namely Gp and fg(net) where Gp is as defined
in Eq. (5) and fg(net) is defined as:

6M(max)
B(d-a)’

where M(max) is the maximum bending moment resisted by the notched
section. It is reasonable to expect that these values are similar
for the short cracked and long cracked beams. Thus it is also
reasonable to assume that if the raw data curves for each crack
length are chosen in a manner which ensures that the two average
curves have similar Gp and fg¢(net) values, then they are likely to
produce an accurate tension-softening curve. The fg(net) values
significantly affect the deduced tensile strength and there is a
direct relationship between the two Gp values and the J. value. This
approach is especially useful when the number of tests performed is
small.

(9 £ fnet) =

6 CONCLUSION

As the importance of fracture mechanics and in particular the
importance of the tension-softening relationship in the analysis of
the structural behavior of a brittle material such as concrete is
more widely accepted, it will be imperative that a standard test
procedure to determine this relationship exists, which is relatively
simple to perform, requires only normal laboratory equipment and is
numerically verifiable. Such a testing method is presented here in
the form of an indirect J-integral technique and results obtained
from tests on Kevlar fiber reinforced mortar compare well with direct
tension test results. A set of deduced tension-softening curves,
obtained by this method, for plain mortar, and mortar reinforced with
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steel and acrylic fibers show reasonable agreement with measured
tensile strength and Gp values. With some further refinements of the
technique, to improve accuracy, this test could become a practical
means of obtaining important fracture parameters for tension-
softening materials.

7 SUMMARY OF THE CURRENT STATUS OF THE J-BASED TEST METHOD

The J-based test method has undergone extensive development in the
last few years, both at MIT and elsewhere. It has been applied to a
diverse group of materials, and on specimens of various geometries.
The following is a summary of the current status of this test method.
It is expected that further developments will have been made by the
time this article is published, as several groups in Europe, Japan
and in the United States are conducting research in the J-based test
method and its applications.

* The J-based test method provides a complete tension-softening
curve in addition to the fracture energy. The complete tension-
softening curve may be used as a constitutive law beyond the linear
stress-strain deformation in computational codes for simulating or
predicting concrete structural behavior [Hillerborg (1983)].

* The J-based test method has been applied to an increasingly wide
range of materials, including mortar [Li et al (1987)], steel FRC
[Leung and Li (1988)] and synthetic FRC (this study), and granite
[Hashida (1989)] and basaltic rocks [Chong et al (1989)]. The
results have been quite satisfactory.

* The J-based test method is flexible in allowing the use of
specimens with various geometries. For example, compact tension
specimens have been used by Li et al (1987) and Hashida (1989),
4-point bend beam specimens have been used in this study, semi-
circular specimen from rock cores has been used by Chong et al
(1989) .

* The J-based test method does not require sophisticated or
modified loading machines, and is therefore quite suitable for
industrial adoption.

* The J-based test method has been verified numerically for two
specimen geometries: 3-point beam bending geometry by Hillerborg
(personal communications, 1985) using the finite element method; and
compact tension geometry by Reyes (1987) using the boundary element
method.

* The J-based test method has been successfully applied to
specimens which can be much smaller than that required by classical
fracture toughness test imposed by LEFM small scale yielding
conditions.

* The J-based test method has produced tension-softening curves
for mortar [Li et al (1987)], FRC (Li and Ward, this study) and rock
[Hashida (1989)] which compares well with data obtained from direct
tension tests.

* The J-based test method has produced fracture toughness in a
fine grain basaltic rock which compares well with classical fracture
toughness test using a very large specimen (9-inch diameter) [Chong
et al (1989)1].

* The J-based test method has produced fracture energy values for
FRC which compares well with that measured using the Gp test
technique currently recommended by RILEM (This study).



* The J-based test method has produced limited evidence of size-
independence in a study of 3 different specimen sizes in granitic
rock [Hasida, (1989)]. [The smallest specimen did produce different
tension-softening curves from the other two size specimens, however
there were only two data sets for this smallest specimen].
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