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An analytic constitutive model is derived for the post-peak behaviour
of composite concrete. Tension softening is modelled in relation to
propagation of a dominant crack against an effective toughness which
accounts for crack deflection and the existence of distributed
interfacial cracks. Analytic expressions for the tension softening curve
and fracture energy are derived in terms of internal material
parameters. Limited comparison between model predictions and
experimental data and an overall discussion of the effects of internal
material parameters on composites properties are presented.
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The post-peak tension-softening behaviour of concrete
has been studied by many researchers.'™ Horii et al®
modelled the tension—softening curve by considering
concrete in the post-peak stage as an idealized body
containing a periodic array of microcracks with
identical crack length and spacing. By using known
stress intensity factor at the microcrack tips, the
ambient tensile load is related to the crack length and
thus, related to the average separation.

In the present paper a simple tension—softening
relation is developed by using linear-elastic fracture
mechanics on the meso-scale. The post-peak behaviour
is modelled as an extension of the largest crack, called
dominant crack. (In Part [, the development of the
cement/aggregate interface crack in relation to
distributed inelastic deformation was described. The
branching of the largest crack from the cement/
aggregate interface into the matrix is assumed to be
associated with the tensile strength).

DOMINANT CRACK PROPAGATION

After the peak load is reached, the dominant crack
propagates unstably, whereas other smaller cracks
become inactive. The dominant crack may be

simplified approximately as one that is straight, with
crack length equal to 2(L + Rp.y), where L is the
length of crack in the cement matrix. If the presence of
other aggregates is not considered, the propagation of a
straight crack within the matrix is governed by the
equation

OV'IJT(L + Rmax) = ?: (1)
where KT is the cement matrix toughness.

The fracture path is generally tortuous in normal
concrete, in contrast to plain cement paste in which the
fracture path is rather planar, The tortuosity of the
fracture path may be related to the crack deflection
effect. When the dominant crack intercepts another
aggregate, it would most likely deflect around the
aggre%ate because the cement/aggregate interface is
weak.’ Deflection reduces the stress intensity factor at
the new tip because the deflected crack tip orientation
is no longer perpendicular to the applied load.
Effectively, the material is toughened.

In addition to crack deflection toughening, the
presence of cracks at cement/aggregate interfaces
increases the material's toughness. The interfacial
cracks reduce the elastic modulus of the material ahead
of the dominant crack, lowering the stress intensity
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factor at the dominant crack tip and providing a T
shielding effect. Again, the material is effectively
toughened.

To account for the above fracture processes, it is
envisaged that the dominant crack propagatesinto a
homogeneous material with an effective toughness Kfi'
higher than Ki;. The toughening mechanisms and the
resulting K§ are discussed in the following paragraphs.
It should be noted that other toughening and damaging
mechanisms not accounted for in the present modelling
effort may be operational simultaneously. These
include, for example, crack blunting when it runs into
an air void, or discontinuous crack planes (branching)
which subsequently link, and which increase the
fracture surface area.

TOUGHENING MECHANISMS
Crack deflection toughe'ning

To evaluate crack deflection toughening, it is necessary
to examine the reduction in crack-tip stress intensity for
different deflection angles, illustrated in the inset of
Fig. 1. This problem was solved by Faber et al.®
Extension of the deflected portion of the crack was
considered to be governed by the requirement that the
strain energy release rate G attains the critical value
G., related to the matrix toughness KT;. The strain
energy release rate, averaged over all possible
deflecting angles, was calculated by using a
probabilistic analysis:

K{UKP = J1.0 + 0.87 V; ()

where K§<f is the effective toughness due to crack
deflection. The volume fraction of inclusions, Vs,
comes into the equation through the consideration of
the probability of crack-aggregate interceptions. For V¢
=0.1,0.3,0.5and 0.7 K5¢ /KT: = 1.04,1.12,1.20 and
1.27 respectively, Fig. 1. The possibility that the
propagating crack does not intersect the centre of the
aggregate has also been considered in the derivation of

Equation (2).

Toughening due to distributed interfacial cracks

The formation and propagation of a dominant crack
implies a stress relaxation and possibly closure of
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Fig.1 Toughening due to crack deflection about the second
phase inclusion at angle 6
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Fig.2 Toughening due to the interfacial cracks ahead of the

dominant crack and schematic diagram indicating shielding
effect o

interfacial cracks in the material away from the
dominant crack. This material may be expected to
unload elastically with an elastic modulus similar to the
uncracked state. However, in the zone of material
ahead of the dominant crack, the high tensile stress
there would keep the interfacial cracks open, resulting
in a material with Young’s modulus effectively smaller
than the original uncracked material. By considering
the path independence of the J-integral, Evans and
Faber” showed that the dominant crack tip stress
intensity factor is lowered by the reduced local
modulus, resulting in a toughening effect. Hence

Kfe/Kp = JEn(1 = VWEQ — vm) 3)

where Ki:© is the material toughness with distributed
interfacial cracks, E,, is Young’s modulus for the
material devoid of cracks, E is the modulus with
interfacial cracks, and v and v,, are the corresponding
Poisson’s ratios.

By using the self-consistent technique employed by
Budiansky and O’Connell’® in treating the distributed
interfacial cracked body, and assuming that each
aggregate has one interfacial crack, the reduced elastic
moduli may be related to the volume fraction of
aggregates by

E n?

==1-a-V (4)

Details of the derivation are given in Appendix A.

Substitution of Equation (4) into (3), assuming v = v,
results in the toughness increase

- 1
K{E/IKGE = 5
fe 7 HIC \/1 — (@¥16) Vi (1 — v?) ©®)

Forv = 0.20and V;=0.1,0.3,0.5 and 0.7 and K{i/K]
=1.03,1.10, 1.19 and 1.30 (Fig. 2)

Effective toughness

Taking into account the crack deflection and interfacial
cracking effects, and assuming that these two

371



mechanisms operate independently, the effective
toughness of the material can be written as

e 1
K$'K 1.0 + 0.87V,
= ‘\/1 — (@16) Ve (1 = v3)

(6)

Forv=0.20, V;=0.1,0.3,0.5and 0.7 and K§{{YKT: =
1.07,1.24, 1.43and 1. 66 This implies that the
dominant crack propagates into a ‘homogeneous’
material whose toughness is 66% higher than the
cement matrix toughness, for a concrete with V; = 0.7,

Equation (6) is also used in calculating the concrete
tensile strength, £, in part I, which gives

ftv AR = de (7

Here, for simplicity, the effect of crack interactions
discussed in part I is assumed to be negligible. The
matrix toughness in Equation (1) should now be
replaced by the effective toughness as

OJa(L + Rpax) = Ki (8)

TﬁVS/ON—SOF TEN/A(G RELATION
Cb"icu/ation of tension—softening curves

To calculate the tension-softening curve, the
relatlonsmp between the ambient tensile stress, o, and
the opening separation, 3, on the failure plane must be
determined. The progressive formation of this failure
plane is probably associated with the expansion of the
dominant crack, and d is equated with the average
opening contribution of this crack. Thus & increases as
the crack expands against the effective fracture
toughness K given by Equation (6). In relating dto
the crack length L in Equation (8), carried out in detail
in Appendix B, it is assumed that the crack length
jumps by the size of the aggregate each time the
dominant crack intercepts an aggregate. This
phenomenon contributes to a larger 8 at a given load o,
which is accounted for approximately by modifying the
crack length L with respect to aggregate volume
fraction Vf in the present modelling. Details of this
modification are also presented in Appendix B. The
resulting tension—softening curve, relating d and o, is

(chf) (l - VZ)
E1-V)f (o /ﬂ

Equation (9) shows the post-peak behaviour
dependence on the Young’s modulus, E, the Poisson’s
ratio, v, the aggregate volume fraction, V4, the tensile
strength, f,. and the matrix toughness, KTt (implicitly
expressed in K§f). It is interesting to note that the
cement/aggregate interfacial toughness affects the 0-6
curve only through f,.

d = [1 = (o/f)’] )

The tension—softening curve predicted by the present
model is plotted in Fig. 3 for some typical values of the
material parameters of concrete. The stress drops
sharply with a long tail, with the initial slope strongly
controlled by the ratio (KLff %/Ef,. The area under the
curve represents the energy release rate G, of the
composite.
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Fig.3 The predicted tension-softening curve for a typical
concrete

Comparison of theoretical and experimental results

Comparison of the predicted tension-softening
relations with the experimental results given by Refs 1
and 2 is illustrated in Fig. 4(a) and 4(b). In both Refs 1
and 2, the matrix toughness Kt was not given, so the
curves were plotted for a range of typical Kt values of
concrete. The critical separation §., which is used to
normalize the separation d, is taken to have the same
value as that which is given by the experimental data.
(In Ref. 2, the critical separation §, was obtained only
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Fig.4 (a) comparison of predicted and measured normalized
tension-softening curve. The aggregate and sand specific
density is assumed to be 2.6, and cement specific density 3.15,
approximately, in the calculation of V;. The experimental data is
from Ref 1, and (b) comparison of predicted and measured
normalized tension—softening curve. The experimental data
(shaded area) is from Ref. 2
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for one of four tests). The experimentally determined
3. is usually obtained by measuring the opening
separation of the failure plane at the moment when the
stress reduces to zero. The determination of the critical
separation in the new model will be discussed. The
tension—softening curve predicted compares
reasonably well with the experimental data.

Determination of critical separation

In the final stages of a uniaxial tensile failure, a
macroscopic fracture plane forms through the cross-
section of the specimen. The coarse aggregate particles
are subsequently extracted from either face of the
fracture plane. The frictional pull-out of the aggregate
is thought to be the most important failure mechanism
at this stage by many authors. 1.2 The assumption that
the o6 curve is controlled by a crack-like deformation
mode is no longer valid. Instead, the frictional force
which supplies the stress-transferring capacity across
the failure plane has to be considered. :

Unlike fibre pull-out, in which the critical separation of
the failure plane is just equal to half the length of the
fibre, the critical separation in aggregate pull-out is
much smaller than the aggregate radius, as shown by
many experiments.'™ To describe the aggregate
pull-out process, parameter, 1, defined as a
measurement of the roughness of the aggregate surface
is introduced. When an aggregate is being pulled out
from the cement matrix, interlocking of the matrix and
aggregate, through roughness 1, supplies the resistance
to the separation of the plane. This resistance reduces
to zero only when the matrix and aggregate can shear
through freely, when there will be no resistance to the
further opening of the failure plane, Fig. 5. By
geometric analysis, assuming the maximum aggregate is
 the last one to be pulled out, the critical separation is
obtained as

8 = 2R M ()

Frictional pull-out of aggregates

The aggregate pull-out can now be studied by taking a
unit cell from the failure plane, Fig. 6. Assumptions are
that: the cement matrix is very brittle so the load is
carried by the frictional force at interfaces only; and

Fig.5 An aggregate with roughnessn
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Fig.6 Schematic diagram of aggregate frictional puli-outand a
unit cell of the failure plane

each aggregate has an average radius R,,,. The
equilibrium of the unit cell requires

Y (2Ravg/vf) = t*(ac - 6) (11)
where g is tensile stress and t* is the interfacial shear
strength.

The average aggregate radius, R,.,, can be taken as the
mean value of the random size distribution. For the
Fuller-curve distribution

Rmax
Rug = fo H()dr = (113)Romax (12)

Substituting Equation (12) into (11), the tension—
softening curve in the stage of final failure is obtained

0 = (BVi/2Rmax) T° (8. — 0) (13)
or in the non-dimensional form

g 3Vf T* 6

- = &, — {1 - —

fo T R T ( 6C) (14

The stress o is linearly dependent on the separation.

Fig. 7 shows a complete tension—softening relation. At
the initial stage, when the crack separation is small, the
material is characterized by the behaviour of a
dominant crack. In the final stage of failure, the
frictional pull-out becomes dominant. The strength
decay rate (Fig. 7) is affected by the ratio between the
material parameters t* and f,. The exact value of t*/f,
and the roughness parameter n which controls d., need
to be determined experimentally.

Energy release rate G,

The area under the tension-softening curve represents
the energy release rate, G, of the composite concrete.
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Fig.7 A complete tension-softening curve

Although there are two regions, one corresponding to
the dominant crack propagation part, the other
corresponding to the frictional pull-out part, only the
tension—softening relation in the first region is used to
calculate G.. The error due to this approximation is
expected to be small because the frictional pull-out
functions only near the very end stage of failure.
Integrating over the area until & = 8, gives

i
-{(K?f)2 1-v) 1
EQ-V)f (olf))
Oc

+ 0.6, (15)

where o is the stress corresponding to 6 = . in the first
region. Simplifying Equation (15) results in

G.= [1- (o/m} do

¢ = 8 [(2/3)1. — Blnt] (16)
where
=2
7
_ KR (= )] .
B = fiEC - V) "
with
8¢ = V2RmaxM
= Kﬁf 18
ﬁ B \anax ( )
DISCUSSION

There are several ways to produce concrete with higher
strength, eg reducing water cement (w/c) ratio, adding
silica fume admixture and/or using small crushed
aggregates. Although high strength usually means high
compressive strength, most factors affecting
compressive strength have the same effects on tensile
strength. Using small-size aggregate reduces the size of
bond cracks and the initial dominant crack size. The
addition of silica fume in combination with a
superplasticizer can lead to reduced water demand,
densified cement paste and stronger bondings. The
resulting high strength concrete is characterized by a
fine pore size distribution and a densification of the
paste matrix microstructure in the cement/aggregate
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interface zone. The reduced porosny also leadsto a
high cement matrix toughness.'® Factors controlling
strength and toughness of concrete are analysed in t}
light of the theoretical model introduced in the
previous sections.

Effect of aggregate size on composite properties

The tensile strength decreases with the maximum
aggregate size R, as indicated by Equation (7).
Equatipns (6) and (7) also imply an increase of tensil
strength with volume fraction of aggregate, other thi
being equal. In normal concrete design, however, th
aggregate volume fraction and the maximum aggreg;
size are not independent variables. The amount of
aggregate varies with the maximum aggregate size in
order to maintain reasonable workability. Based on
mix design code given by Ref. 11, the predlcted
changes in tensile strength f, w1th maximum aggrega
size Dy ay( = 2Rp.x) 1§ shown in Flg 8(a). Following
the same mix design code and using Equation (16), t!
critical energy release rate, G, is calculated and
plotted in Fig. 8(b). These figures suggest that while
reducing the maximum aggregate size improves the
tensile strength, there is also a simultaneous trade of
the fracture toughness of the material.

Limited experimental data on the variation of the
critical energy release rate G, of normal concrete for
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Fig.8 ({a) model predicted tensile strength and (b) model
predicted critical energy release rate, shown as a function of
maximum aggregate size
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Fig.9 Comparison of predicted and measured critical energy
release rate as a function of maximum aggregate size. The
experimental data is from Ref. 12

various maximum aggregate sizes has been reported,'?
using two concrete materials with different water/
cement ratios. Additional recent data can be found."’
The combined data set, shown in Fig. 9, has significant
amount of scatter, even though the general trend
(indicated by the solid linear regression line for all
experimental data points) is consistent with the trends
predicted by the present model. The model predicted
trends in Fig. 9 are based on the same mix design code
mentioned and for three different cement matrix
toughnesses. The experimental data from Ref. 12 was
obtained from equal sized notched beams based on the
RILEM recommended G fracture test.

It should be pointed out that the trade-off between
tensile strength and fracture energy with maximum
aggregate size discussed is meant to describe the
behaviour of normal concrete only. For high strength
concrete, the addition of superplasticizer greatly
enhances workability. This leads to a closer packing of
cement grains and to a rise of the cement matrix and
possibly the concrete toughness.

Effect of interfacial and matrix toughness on
composite behaviour -

The reduction of porosity and large pore size in cement
paste as well as the densification of the interfacial zone
can be expressed in terms of an increase in cement -
matrix toughness, Ki; and interfacial toughness, Kit.
Their effects on concrete tensile strength could be
predicted by the present model.

In the previous calculation, the ratio Ki'/Kfe = 0.6 was
used, which implies a regular bonding for normal
concrete. For better interfacial bondings, ie 0.6<Kjl/
K<1.0 (note that Kift < K[I< K22 is always assumed in
the present model) the crack at the largest aggregate
interface would branch into the matrix at an angle less
than 7i/2. The relation between the stress and the crack
length after branching has the following form

0JT(L + Rmacsin®) = oK (19)

where o = K§f/KQ
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Table1 Values for branching angle, toughening
effect and tensile strength for V; = 0.3 where £ =

f( \‘rRmax-/KE:‘

o* 50° 60° 70° 80° 90°
Kif/Km 101 092 081 072 0.65
r 0.793 0.746 0.716 0.699 0.694

Again, assuming o = f;, when the first branching
occurs, Equation (19), together with Equation (2) in
part I, can be used to solve two unknowns, tensile
strength f, and branching angle 6*. This gives

Kie _ 1
KP  /m F(0*),sin 8%
ft\"{Rmux 84
= — 20
K@ Jm sin 0* (20)

Values of 8*, Kif/K{ and f; are shown in Table 1 where
f?=ftVRmax/K?c:' '

Within the range Kift<KT, the smallest branching angle
6* equals 50°. Thus according to the model, in going
from regular bond, Kit/Kf: = 0.65, to good bond,
KiL/KT = 1.0, tensile strength increases by about
14.3%. This result is consistent with the observation of
Mindess'? ‘Most studies of strength, be they tensile,
compressive, or flexual, have shown that improving the
cement aggregate bond strength does increase the
concrete strength, but the effect tends to be moderate.
In going from little or no bond to the best bond that can
be achieved, strengths have been observed to increase
by about 20-40%.’

Equation (20) also indicates that concrete tensile
strength is proportional to the cement matrix toughness
K. This implies that a change in matrix toughness has
more effect on concrete strength than a change in
interfacial toughness. Although quantitative
comparison with experimental data is not possible
because most data were reported in terms of matrix or
interfacial strength instead of toughness, it is still
possible to get some qualitative comparisons, eg the
paste strength is about twice as important as the bond
strength in determining the concrete strength.'>'*

A relationship between tensile strength and w/c ratio
was reported by Zielinski,"? after standardization and
extrapolation of the experimental results, Fig. 10.
Tensile strength decreases with increasing water/
cement ratio because a higher water/cement ratio
produces larger pore size, higher porosity and weaker
cement/aggregate interfaces. The dots in Fig. 10 are the
values predicted by the present model using K¢ values
referenced by the same paper,'” Fig. L1. In the
calculation, the change of K/ KT was not included due
to the lack of experimental data of how Ki. changes
with w/c ratio, and because of the moderate effect as
indicated by the discussion above. It is expected that
the induced error would be small because both Kj; and
K are increased with reduced w/c ratio, so that Kit/KD
remains essentially unchanged.

375



1.6
14F
B
s 12 Ff N
; |
£ g0t
.
08
06 1 1 1 1 1 1 i A 1
’ 0.35 0.45 0.55 065 ° 075

w/c
Fig. 10 Normalized tensile strength versus water/cement ratio

0.5

w/c

Ah A — —
0.4 A A AAT A —ox
K A

——— e e B — —— 036
| ¥ ]

%
*b

0.3 —-‘-————-—-;:—0.50

/ - XX

[ sx”

0.2 f/)(x O
"l [ 1
} O @)

0.1 K

Kic (MN m=3/2)

0 25 50 75 100 125
Specimen age (days)

Fig. 11 Experimental measurements of cement matrix
toughness K versus water/cement ratio, from Ref. 18

One limitation of the present model is that

Kit<K[r< K3E2 is always assumed. Sometimes this
assumption cannot be satisfied. For example, in high
rate loading or high strength concrete with good
interfacial bonds and small aggregate sizes, the cracks
do not necessarily nucleate at the cement/aggregate
interface, and the crack path can cut through coarse
aggregate particles instead of passing around them.'®
This crack pattern implies a different failure
mechanism compared with normal concrete. The
toughening mechanisms accounted for in the model,
such as toughening due to crack deflection or
distributed interfacial cracks, will no longer exist. The
present model needs to be modified before application
to the problem of ‘cutting through aggregate’ crack
pattern.

CONCLUSIONS

The macrocopic tensile behaviour of concrete is
analysed by means of investigating its internal structure
and failure mechanisms. In particular, a post-peak
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tension-softening relation is developed. The model
predicts the dependencies of post-peak
tension-softening relation and fracture toughness on
Rumax> Vi, and K72. Comparisons of model predicted
values with experimental data, whenever available,
show reasonable agreements.

The behaviour of concrete in tension is complicated
because of the inhomogeneity of the material. A
complete description of it has not been presented here.
The model can only be regarded as preliminary becaus
of the many assumptions built into it: for example
simplifying coarse aggregates as circular discs,
assuming Kjf< K< K¢ (which may be violated in higl
strength concrete or concrete under high loading rate)
and all the other assumptions concerning interfacial
cracks and the dominant crack. The expansion of a
simple dominant crack and the toughening of the
matrix by distributed interfacial cracks are particularly
contentious assumptions. In spite of the simplified
assumptions, the model seems to be able to predict the
gross features of tensile composite behaviour of
concrete and provide some implications in concrete
material engineering.
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APPENDIX A, Calculation of the reduction of
Young’s modulus due to interfacial
cracks

The elastic moduli of concrete will be reduced near the
peak tensile load due to interfacial cracks. In this
appendix, an expression for the reduced Young’s
modulus is developed in terms of the aggregate volume
fraction, V. This development is based on a self-
consistent technique first utilized by Budiansky and
O’Connell' in estimating moduli changes in 3-D
randomly oriented flat-cracked elastic bodies

Let K., E, and vy, represent the bulk modulus,
Young’s modulus, and Poisson’s ratio of an uncracked
body, respectively. Let K, E and v represent those of a
cracked body. Using the self-consistent method, K, E
and v can be estimated by calculating the energy loss
produced by a single isolated crack in an infinite
medium having the effective properties of the cracked
body. The simultaneous equations for the
determination of K, E and v for an arbitrary shaped
crack in the 3-D case have the form'®
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where a is a characteristic linear crack dimension, eg
the radius of a penny-shaped crack, N is the number of
cracks per unit volume, f and g are non-dimensional
shape factors that can depend on v as well as on the
crack shape, « represents the angle between an
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arbitrarily applied load and the normal of crack plane
and f is the angle related to the crack orientation. The
angle brackets in Equation (A1) denote an average.

Adaptation of Equation (A1) to the 2-D model
requires using crack dimension a? instead of 4> and
taking § = 0 because all the interfacial cracks have the
same orientation. With the assumption that crack sizes,
shapes and orientations are uncorrelated, the averaged
value in the angle brackets can be calculated by
integrating « from O to 27t, which results in <cos*a> =
3/8, <sin*acos?e> = 1/8, and Equation (A1) then
reduces to

K _ | _ 2N@) )
Kn 30 -2v)
E%] =1- % N@ [3f(v) + g(v)]
% = 3(1 - 2v) (A2)

The shape factor f(v) arises in considering the potential
energy loss (Ay),, in the solid due to the introduction of
a single crack in an infinite medium having the effective
properties of the cracked bodies, and under hydrostatic
load p, such that

2.2
(A, = = fv) (A3)

from dimensional analysis. For an infinite plate
containing a flat crack

a
(Ay), = 2f G.da
0
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where G is the energy release rate. Integrating
Equation (A4) and comparing the result with Equation
(A3) gives

fv) = a1 = v (A5)

For the shape factor g(v) which arises in a similar
consideration of potential energy loss but under
uniaxial loading, simple dimensional analysis and
specialization to the 2-D case leads to

gv) = m(l —+?) (A6)
Substituting Equations (A5) and (A6) into (A2)
2n(1 — V2
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3(1 — 2v)

=1-n(l - v)N@>

3(1 - 2v) (A7)
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To calculate N(a? in Equation (A7), it is assumed that
each aggregate has one interfacial crack of length
(7/4)R. In reality the interfacial crack lengths probably
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span a spectrum 0<0<8,. For a random aggregate size
distribution,
N = L Ruax (7 g p(R)dR = = V; (A8)
V] 4 16
where p(R) is the number density given by Equation
(10) in the text. '

Substituting Equation (A8) into the second equation of
(A7)

E JTZ 2
E. 1 16 (1 —-v)Vs (A9)
which reproduce Equation (4) in the text. It should be
noted that if the crack angle 6 approaches /2, and for
large enough volume fraction V¢, Equation (A9) may
predict a E/E,, approaching zero or even becoming
negative. Physically this implies a loss of coherence of
the material as the aggregate volume fraction
approaches unity and the interfacial crack density
becomes very high. In this limit the self-consistent
approach used in deriving Equation (A9) breaks down.

APPENDIX B. Ca/cu/afion of the tension—softening
curve at the initial stage

The dominant crack will join with the interfacial crack
each time it intercepts an aggregate. This leads to a
jump of the dominant crack length by aggregate size D
(= 2R). This discontinuous expansion of the crack
should lead to a lower equilibrium load. However, the
new crack tip resulting in joining the dominant crack
with an interfacial crack may be oriented in such a way
as to require additional load to reinitiate the dominant
crack. For simplicity, it is assumed that these opposing
effects cancel each other out, so that the dominant
crack jumps occur at essentially constant remote loads.
The dominant crack jump effect is accounted for
approximately in the present model using a modified
crack length in calculating the opening separation.

Assuming that each aggregate has an average diameter
D,,, and the spacing between aggregates is b, the

378

propagation of the dominant crack is governed by the
equation

o/na = K (B1)

where a is the total crack length, including the crack
length before branching, Rmax, and the crack length in
the matrix, L.

At the peak load, when a = R«
ft\/ anax = Ki:gf (B2)

Let a.¢ denote the crack length after the dominant
crack joins with the interfacial cracks. If the crack
length before branching can be neglected (this
assumption gives an error of 8 less than 5%) then the
crack lengths are approximately equal to

a=nb
Aegt = N (b + Davg) (B3)
when the dominant crack has intersected n aggregates.
For a given aggregate volume fraction, V;
Aetr b+ Davg 1
= = B4
a b 1 - Vf ( )

The opening separation § is equated to the average
opening contribution of the dominant crack as

_ S S
205 2ac5

5 (B5)

where § = (2n0/E)(1-v?)(ac)* is the opening area of
the crack faces, S is that at the peak load, and the
modified crack length a.g is used in Equation (BS5) to
account for the dominant crack jumping effect.
Therefore

a _ nft (1 — Vz) R?nax
1 - Vf E 1- Vf a (B6)
Equation (B6), together with Equations (B1) and (B2)

can be used to calculate the tension—-softening curve.
The final result has the form

, _ K -v) 1
E(l - Vifi (o/f)

5 =”—;(1—v2)

[1 - (o/f)] (B7)
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