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ABSTRACT: This study proposes a new theoretical approach for predicting the tensile stress-strain relation of
random short-fiber-reinforced cement composites showing pseudostrain hardening. This approach is grounded
on the solid basis of micromechanics, which describes the pseudostrain hardening phenomenon in terms of
constitutive properties of the fiber, matrix, and fiber/matrix interface. The proposed modeling requires theoretical
treatment of an inelastic strain due to multiple cracking. This modeling is achieved by employing a probabilistic
description of initial flaw size distribution, which should be known for predicting the stress-strain relation. This
study proposes a practical method for this identification using the tensile test result of a reference composite. A
comparison with the test data indicates that the proposed model is capable of reasonably reproducing the stress-
strain relation of ‘‘similar’’ composites. Such composites have a configuration similar to the reference configu-
ration but different in fiber volume fraction and fiber length. Finally, the proposed theory is a potentially powerful
tool for tailoring composites to satisfy targeted structural performance.
INTRODUCTION

Pseudostrain hardening (PSH) cement composites rein-
forced with short random fibers have been extensively inves-
tigated in recent years [e.g., Leung (1996) and Li (1993)].
These random short-fiber-reinforced cement composites
(RSFRCC) with PSH are defined as composites that exhibit
multiple cracking perpendicular to the loading axis under uni-
axial tensile loading. The multiple cracking is accompanied by
one to two orders of higher tensile strain capacity and fracture
toughness compared with conventional RSFRCCs. It is ex-
pected that the structural performance of elements (e.g., seis-
mic resistant elements) with PSH-RSFRCCs can be greatly
enhanced (Naaman and Reinhardt 1995). Detailed investiga-
tions have been conducted to design these PSH-RSFRCCs,
adopting micromechanics by Li and coworkers [e.g., Li and
Leung (1992)]. As a result, the micromechanics-based design
guidelines have been established for PSH-RSFRCCs.

However, the micromechanics-based prediction of PSH-
RSFRCC’s tensile stress-strain relation has been less clarified,
which is an important characteristic for structural design. A
major obstacle in tensile stress-strain modeling is the charac-
terization of an inelastic strain due to matrix cracking. This
inelastic strain was originally investigated for continuous
aligned fiber-reinforced composites by Aveston et al. (1971),
in which matrix cracking stress was simply assumed uniform
in each of the multiple cracks. Their results were then ex-
tended for composites reinforced with randomly distributed
long fibers (Aveston and Kelly 1973). Following these re-
search works, matrix cracking of composites under tension has
been extensively investigated in the field of ceramics. Stress
at cracking was derived as a function of micromechanical pa-
rameters representing the initial flaw size and the fiber’s crack
bridging performance (Marshall et al. 1985; Marshall and Cox
1987). Furthermore, cracking was statistically examined, and
its stochastic aspects were analytically clarified (Beyerle et al.
1992; Cho et al. 1992; Zok and Spearing 1992; Spearing and
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Zok 1993). Based on these results, inelastic strain due to ma-
trix cracking was modeled in relation with crack evolution
[e.g., He et al. (1994)]. An analytic model for the stress-strain
relation was then proposed for ceramic composites, which are
restricted on the condition that fibers are aligned and contin-
uous (Evans et al. 1994). However, few attempts have yet been
made to extend these theories for random short-fiber-rein-
forced composites.

For RSFRCCs, tensile stress-strain models have recently
been suggested using micromechanical properties of constitu-
tive materials while essentially requiring rather complicated
numerical calculation. For example, the theory by Aveston and
Kelly (1973) has been extended such that the realistic behavior
of short fibers in composites (e.g., debonding, pullout, and
rupture) was accounted for (Kullaa 1998). Statistical aspects
in matrix cracking were not considered in this theory. More-
over, a finite-element method (FEM) simulation scheme was
proposed accounting for the pullout behavior of a single fiber,
in which matrix cracking is treated as a random variable (Al-
wan 1994). These models were reported to yield stress-strain
curves of RSFRCCs consistent with the test results.

For PSH-RSFRCC structural elements, an advanced FEM
analysis approach has recently been proposed (Kabele and
Horii 1996). This FEM model implements a constitutive law
that expresses multiaxis macroscopic behavior of PSH-
RSFRCCs. This constitutive law requires that the uniaxial ten-
sile stress-strain relation be given. Therefore, expressing the
uniaxial stress-strain relation in terms of the micromechanical
parameters is a basis for assessing the more complicated struc-
tural behavior of PSH-RSFRCC elements, in which PSH-
RSFRCCs are usually in multiaxial stress states.

The current study proposes a new tensile stress-strain model
for PSH-RSFRCCs, with emphasis on maintaining mathemat-
ical simplicity while grounded on the solid basis of micro-
mechanics. The micromechanics employed has been estab-
lished to describe the PSH phenomenon in terms of
constitutive properties of the fiber, matrix, and fiber/matrix in-
terface (Li and Leung 1992). This fundamental micromechan-
ics has provided reasonable explanations for the experimental
observations of multiple cracking [e.g., Li et al. (1995)]. The
current theory represents an extension of the approach adopted
by Wu and Li (1995b), in which the multiple cracking se-
quence was treated statistically, and the flaw size distribution
was computer simulated as a Monte Carlo process (Wu and
Li 1995b). As a result, the present model provides simple an-
alytic formulas for the stress-strain relation of PSH-RSFRCCs.

In the present study, the following three major issues, which
relevant to the modeling of the tensile stress-strain relation,
are addessed: (1) A simple geometric representation of the
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FIG. 2. Tensile Behavior Representation for PSH-RSFRCC

FIG. 1. Tensile Behavior Representation for Conventional
RSFRCC

stress-strain relation; (2) a constitutive model for predicting
ultimate crack spacing; and (3) a procedure for identifying
flaw size distribution. The resulting stress-strain theory is then
substantiated with the experimental test results. Finally, the
implications of this theory are discussed in relation to the de-
sign of composites as structural materials.

THEORETICAL TREATMENT OF STRESS-STRAIN
RELATION

Tensile Stress-Strain Representation

One of the most distinct features of PSH-RSFRCCs is that
their inelastic tensile behavior can be represented by stress-
strain relations. This is different from conventional RSFRCCs,
whose tensile behavior proceeds to the postpeak softening
stage immediately after first cracking. The softening stage
must be represented by a stress-crack opening displacement
(COD) relation as illustrated in Fig. 1. For the conventional
RSFRCCs, this tension softening behavior should be taken
into account in structural design. On the other hand, the pre-
peak stress-strain behavior is important for predicting struc-
tural response as well as postpeak behavior when PSH-
RSFRCC is used. For the PSH-RSFRCCs, tensile stress is
maintained after first cracking, accompanying significant strain
extension as depicted in Fig. 2. This figure illustrates that ten-
sile behavior can apparently be expressed with a stress-strain
relation up to the ultimate state, when damage localization
initiates. (Note that the stress-COD relation should be used
after the ultimate state.)

Outline of Proposed Theory

The tensile stress-strain relation for PSH-RSFRCCs is char-
acterized by two states, the first crack state and the ultimate
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FIG. 3. Tensile Stress-Strain Representation; —— = Model;
––– = Experimental Data

state. These two states are illustrated in Fig. 3, which shows
an actual tensile stress-strain curve of PSH-RSFRCCs and its
geometric bilinear representation. The first crack state refers
to the first bend-over point and is assumed to be equal to the
steady-state cracking stress sss (further defined below), when
multiple cracking initiates. The ultimate state refers to the peak
tensile stress state when multiple cracking terminates. The bi-
linear representation of s(ε) in (1) requires the theoretical pre-
diction of ultimate strain εcu, the steady-state cracking stress
sss, ultimate stress speak, and composite elastic modulus Ec

(Fig. 3)

E ε, ε # s /Ec ss cs(ε) = (1)Hs 1 E ε, ε > s /Ei ie ss c

where

s 2 s Epeak ss ie
E = ; s = s 1 2ie i ssS D S Dε 2 s /E Ecu ss c c

Supposed Ec is known, and three major parameters, εcu, sss,
and speak, need to be theoretically identified to complete (1).
The procedure for identifying these major unknown param-
eters is outlined in the first step (Step I) in Fig. 4. In the first
step, estimating sss and speak is completed, based on published
theory, which relates these parameters to fiber, matrix, and
interface properties (Li and Leung 1992). However, εcu has not
been comprehensively modeled in past studies, and its iden-
tification is not completed in the first step. This identification
is the focus of the present study and needs three additional
steps (Steps II–IV) in Fig. 4, which are described in detail in
subsequent sections. Identifying sss and speak in first step of
Fig. 4 is explained in more detail below.

Steady-state cracking stress is estimated from composite
crack bridging stress sc, which represents the apparent closing
pressue due to fiber bridging acting on the composite crack
plane, and cracking stress level sfc. Moreover, sfc is defined
as the stress level at which each of the multiple cracks prop-
agates, when each crack at a different part of the specimen
has a different size. The stresses sc and sfc were derived based
on fracture mechanics and micromechanics as follows (Li and
Leung 1992):

ŝ c̄c = 2c̄ 2 (2)Ï
g 2

ŝ 2 2 c̄ pÏ Ïfc ¯= c̄ 2 1 K (3)ÏS Dg 3 4 2c̄

where
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FIG. 4. Outline of Proposed Stress-Strain Theory

f = snubbing coefficient; ti = frictional bond strength; Vf =
fiber volume fraction; Lf = fiber length; df = fiber diameter

ĉ c 2t L V EÏ f f fˆc̄ = ; ĉ = ; d* = ; h = ;ˆ c E (1 1 h) d V Ed* i f f m m

2
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K̄ = ; c =i S D 2 2ˆ 2K 16(1 2 n )s c gd* tipÏ0 i

c = flaw radius; Ef = fiber elastic modulus; Vm = matrix volume
fraction of matrix, Em = elastic modulus of matrix; Ktip = crack
tip fracture toughness; Ec = elastic modulus of composite; and
n = Poisson’s ratio of composite. In (2) and (3), sc and sfc are
expressed as a function of flaw size c, and they are schemat-
ically shown in Fig. 5(a). Eqs. (2) and (3) were essentially
developed for ‘‘flexible’’ fibers such as polymer fibers that
have no bending stiffness. Furthermore, neither fiber rupture
in crack bridging action nor chemical bonding between fiber/
matrix interface was taken into account. Because it is based
on (2) and (3), the stress-strain theory in this paper has the
same limitation in the properties of fiber and fiber interfaces.

Steady-state cracking occurs when sc becomes equal to sfc

in Fig. 5(a). Hence, steady-state cracking stress sss can be de-
rived as (4), using (2) and (3) (Li and Leung 1992)

c̄s
ŝ = g 2c̄ 2 (4)Ïss sS D2
FIG. 5. (a) Composite Cracking Stress and Midcrack Bridging
Stress; (b) Cumulative Probability, as Function of Crack Size

where

s ĉ cÏss s s
ŝ = ; c̄ = ; ĉ =ss s sˆs cd*0 i

The term c̄s in (4) is the flaw size as steady-state cracking
occurs and is determined by solving

2 2c̄ c̄Ï s s ¯c̄ 2 = K (5)s S D3 4pÏ

The second unknown, peak bridging stress speak, can be
evaluated as the maximum value in (2) (Li and Leung 1992)

s = gs (6)peak 0

Hence, the remaining task is to theoretically express εcu in
terms of micromechanical parameters. As an intermediate step,
εcu can be written as follows (Lin and Li 1997):

dpeakε = (7)cu theoryx d

where dpeak = ultimate COD; and = theoretically pre-theoryxd

dicted ultimate crack spacing. The assumption in establishing
(7) is illustrated in Fig. 6. Fig. 6(a) shows the stress-strain
relation of PSH-RSFRCC in uniaxial tension loading, in which
the ultimate state is specified with speak and εcu. At this ultimate
state, a composite generates cracks as shown in Fig. 6(b). All
of these cracks are assumed to have dpeak (i.e., COD corre-
sponding to bridging stress speak) as shown in Fig. 6(c). The
crack spacing for PSH-RSFRCCs decreases with increasing
applied load and with accumulation of multiple cracking and
is assumed to reach ultimate crack spacing at the ultimatetestxd

state. Finally is defined as the theoretical prediction oftheoryxd

and εcu is then expressed with (7). Eq. (7) assumes thattestx ,d

both crack opening and spacing are uniform over the specimen
gauge length at the ultimate state.

Therefore, the focus in this study is reduced to identifying
the two parameters on the right-hand side of (7) after Step I
in Fig. 4.

Theoretical Prediction of Ultimate Strain

Identification of two parameters, dpeak and in Step IItheoryx ,d

of Fig. 4 is explained in this section. For the first parameter
dpeak, Lin and Li (1997a) found that neglecting the slip-hard-
ening phenomenon in single fiber behavior results in signifi-
cantly underestimating dpeak in RSFRCC’s stress-COD relation.
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FIG. 6. Assumption in Ultimate Strain Expression
FIG. 7. Three Typical Profiles of Single Fiber Pullout Curve

The slip-hardening phenomenon is often observed in bond be-
havior between polymeric fibers and cement matrix (Li and
Stang 1996). Fig. 7 illustrates three typical load-displacement
curves reported in single fiber pullout tests. Slip-hardening is
originated by increasing the frictional resistance with slip dis-
tance after full debonding. This friction increase is considered
due to the abrasion on the soft polymeric fiber surface against
cement hydration particles (Li and Stang 1996). When the fi-
ber surface is hard as in the case of a steel fiber, the tension-
softening behavior is observed as shown in Fig. 7 (Naaman
and Najm 1991).

In RSFRCC’s stress-COD relation, dpeak has recently been
predicted considering the slip-hardening phenomenon in the
behavior of a single polymeric fiber pulled out of a cementi-
tious matrix (Lin and Li 1997)

2b 2 b 2 4aÏ
d̂ = (8)peak 2

where

22a 2 3a a 2 2 b L b L2 1 1 1 f 2 f
b = ; a = ; a = ; a =1 2 24a 4a 2d 4d2 2 f f

b1 = first-order nondimensional hardening parameter; and b2

= second-order nondimensional hardening parameter. The pa-
rameters b1 and b2 are phenomenological (interface) param-
eters determined from the load-displacement relation obtained
in the pullout test of a single fiber embedded in the matrix.

The second parameter is estimated via a newly pro-theoryxd

posed theory. The specific case of PSH-RSFRCCs involving
full saturation of multiple cracking has been previously studied
(Kanda and Li 1998). The ultimate crack spacing with full
crack saturation xd (saturated ultimate crack spacing, hereafter)
depends on transferred stress from bridging fiber at crack plane
to noncracked matrix. This stress transfer is achieved via in-
terfacial shear stress between the fiber and matrix. The satu-
rated ultimate crack spacing xd can be estimated as the mini-
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mum distance necessary for overcoming matrix cracking stress
by transferred stress. This saturated ultimate crack spacing is
expressed as (Wu and Li 1995a)

2L 2 L 2 2pcL xÏf f f
x = (9)d 2

where

4 V s dm mu f
c = ; x =

pg 4V tf i

where smu = tensile strength of matrix.
The saturation of multiple cracking is not a necessary con-

dition for PSH behavior as demonstrated using uniaxial tensile
tests by Kanda and Li (1998). In these tests, RSFRCCs showed
PSH behavior, but larger ultimate crack spacing than xd was
observed in most of those composites (so-called unsaturated
PSH-RSFRCCs). This observation implies the deficiency of
simply using xd to evaluate the ultimate crack spacing. The
existing crack spacing theory (Wu and Li 1995a) should be
extended to cover both saturated and unsaturated PSH-
RSFRCCs. Thus, the scope of this study is further narrowed
down to establishing a new model for evaluating unsaturated
ultimate crack spacing, as shown in Step III of Fig. 4. The
theory is presented in greater detail below.

Theory for Predicting Ultimate Crack Spacing

The new crack spacing theory, which examines the multiple
cracking sequence, is introducted by extending previous re-
search. For saturated PSH-RSFRCCs, the multiple cracking
sequence was demonstrated to be successfully reproduced with
the Monte Carlo simulation (Wu and Li 1995b). The simula-
tion was conducted under the following hypothesis: (1) The
initial flaw size distribution can be represented as a random
process that governs crack evolution; and (2) crack evolution
is terminated if sfc > speak. This simulation neglects the micro-
mechanical parameters’ variability other than flaw size. The
current study employs the same fundamental ideas in the sim-
ulation method of Wu and Li (1995b) and attempts to construct
a crack spacing theory for unsaturated PSH-RSFRCCs as well
as saturated ones. The resulting analytical theory is simpler
than the original computer simulation scheme. It should be
noted that the current theory reduces to identical results of the
existing one (Wu and Li 1995a) when cracks are fully satu-
rated.

In the current crack spacing theory, it is assumed that un-
saturated crack spacing can be evaluated employing the prob-
ability of potentially propagating flaws involved in a tensile
specimen. Cracks are not to be generated with spacing less
than xd, as the matrix stress cannot attain cracking stress level
within length xd from a crack plane in theory (Aveston et al.
1971). Furthermore, the ratio where represents ob-test testx /x , xd d d



served crack spacing in the tests, may be expected to be related
to flaw size distributions in the material. Specifically, flaws
with a size smaller than cmc [Fig. 5(b)] will be excluded from
the multiple cracking process. As shown in Figs. 5(a and b),
cmc is defined as the flaw size where the cracking stress level
sfc attains the maximum bridging stress speak. Flaws smaller
than cmc cannot be activated because they require an applied
load higher than speak (Alwan 1994; Leung 1996). Therefore,
knowing the probability description of the flaw size distribu-
tion and cmc leads to predicting unsaturated crack spacing.

By equating sfc in (3) to speak in (6), cmc can be evaluated
(Wu and Li 1995b)

¯2 2 c̄ p KÏ Ïmc
c̄ 2 1 = 1 (10)Ï mcS D3 4 2 c̄mc

The distribution of flaw size can be treated as a random
process and expressed by the Weibull-type function (Weibull
1951)

m
1 c̄0

F(c̄) = exp 2 (11)F S D Gl c̄

where l = scale factor; m = Weibull modulus; and c̄0 = ref-
erence crack radius. The function F in (11) represents the cu-
mulative probability of flaws with normalized size less than c̄
in the tensile specimen. This statistical distribution function,
following that of Spearing and Zok (1993) and Wu and Li
(1995b), is uniquely determined for a composite once the pa-
rameters m, l, and c̄0 are specified. These three parameters
may be expected to depend on composite characteristics such
as mix proportion and mixing process. However, such depen-
dency has not been investigated.

Once the flaw size distribution is identified, the theoretical
unsaturated crack spacing can finally be predicted fortheoryxd

PSH-RSFRCCs in terms of saturated crack spacing xd

xdtheoryx = (12)d 1 2 F(c̄ )mc

Eq. (12) implies that = xd if all flaws are of size largertheoryxd

than cmc, when F = 0, corresponding to the fully saturated case.
When some flaws are of a size less than cmc, the case of un-
saturated multiple cracking prevails. The function F is sche-
matically illustrated in Fig. 5(b), for three different flaw size
distributions. This figure shows the effects of l, the afore-
mentioned scaling parameter of flaw size distribution function
F in (11). For higher values of l, the flaw distribution is
shifted toward a smaller size for given m and c̄0, and F(c̄mc)
approaches unity. In this case approaches infinitytheoryxd

through (12). This result implies the single crack behavior of
composites. On the other hand, low l leads to F = 0, thus
causing = xd, which denotes saturated PSH behavior.theoryxd

However, moderate l leads to 0 < F < 1, therefore liestheoryxd

between xd and infinity.
As deduced above, the three parameters in (11) heavily af-

fect hence determining these three parameters is the lasttheoryx ;d

task to complete the current stress-strain theory. The detailed
investigation for this determination is outside the scope of the
present study. However, a phenomenological method is alter-
natively introduced, as described below.

Identification of Flaw Size Distribution

The current study proposes a simple procedure to identify
the three parameters in the flaw size distribution function F in
(11) by modifying the approach in the literature (Wu and Li
1995b). Identifying F needs to determine m, c̄0, and l as de-
picted in Step IV of Fig. 4. The parameter m is identified
essentially following the same approach as that in the literature
(Wu and Li 1995b). For concrete, m is typically assumed to
fall between 2 and 3, which is derived by converting magni-
tudes for a strength-based function (Ashby and Jones 1986).
For RSFRCCs, m = 2 is adopted as a slightly lower value
considering additional flaws introduced due to fiber interfer-
ence in the mixing process (Wu and Li 1995b). For the second
parameter, the current study adopts c̄0 = c̄m, where c̄m corre-
sponds to the critical flaw size responsible for tensile failure
of matrix material (without fiber). The parameter cm can be
predicted using basic linear elastic fracture mechanics

2
p KÏ m

c = (13)m S D2 smu

where Km = fracture toughness of matrix. This formula is de-
rived by assuming a penny-shaped crack is involved in the
infinite bulk solid of materials.

It should be noted that this study adopts c0 = cm instead of
cs, the crack size at steady-state cracking achieved in the lit-
erature (Spearing and Zok 1993; Wu and Li 1995b). This is
because cs heavily depends on fiber bridging performance as
well as matrix properties (i.e., composites having higher fiber
bridging performance take lower cs). The current study intends
to eliminate this influence and to deal with c0 as a matrix-
dependent parameter. The background of this modification is
subsequently described in this section.

The last parameter l is handled as an adjusting parameter
and is determined by the next procedure. It is inversely iden-
tified via (12) using the reference tensile test data from a sam-
ple PSH composite, for which crack spacing observation testxd

has been measured. The parameters xd and c̄mc in (12) can be
estimated using (9) and (10), respectively, when fundamental
micromechanical parameters for fiber, fiber/matrix interface,
and matrix are known. Therefore, setting = enablestheory testx xd d

one to invert for l.
The principle underlying idea in this approach is that the

three parameters in (12) are supposed to be uniquely deter-
mined for similar composites. For example, having tensile test
data from a sample PSH composite, one can first obtain the
three flaw size distribution parameters for this sample com-
posite by adopting the above procedure. Then for similartheoryxd

composites may be estimated using these obtained parameters.
In the current study, ‘‘similar’’ means having the same matrix
mix proportion but being different in fiber volume fraction
and/or fiber length. Indeed, flaw size distribution was dem-
onstrated substantially depending on the matrix mix propor-
tion and mix processing through previous research results of
macrodefect free cement materials, in which the population of
macroflaws was remarkably diminished by reducing the water-
to-cement ratio and introducing a special mixing process (Ken-
dall et al. 1983). However, it is still a concern that l cannot
be uniquely determined even for similar composites. This con-
cern arises because the fresh properties of composites are gen-
erally observed to be influenced by fiber length and fiber vol-
ume. This observation suggests that the flaw size distribution
may also be influenced by fiber length and fiber volume. Nev-
ertheless, the effect of these differences is subsequently dem-
onstrated to be minor using analysis results via the next sec-
tion.

It should be noted that c̄0 can be arbitrarily defined in the
proposed procedure for identifying flaw size distribution F
when Weibull modulus m is fixed. For a different definition
of c̄0 = l9 can be determined as follows:c̄9 ,m

m
l9 c̄ 9m= (14)S Dl c̄m

However, the three parameters contained in the function F
should eventually be expressed as a function of micromechan-
ical parameters of composites after extending the proposed
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TABLE 1. Summary of Composites Employed for Theory Vali-
dation

Composite
(1)

Fiber
volume

fraction Vf

(%)
(2)

Fiber
length Lf

(mm)
(3)

Reference
(4)

Vf = 0.75% 0.75 19.1 Kanda and Li (1998)
Vf = 1.0% 1.00 19.1 Kanda and Li (1998)
Vf = 1.25% 1.25 19.1 Kanda and Li (1998)
Vf = 2.0% 2.00 12.7 Wu and Li (1995b)

theory rather than using the phenomenological method. There-
fore, as the most simple example of such an expression, this
study adopted (13) with some physical meaning.

THEORY VALIDATION

Scheme for Theory Validation

The presented theory is substantiated by referring to two
series of uniaxial tensile test results in which four different
RSFRCC mixes involving high strength polyethylene fiber
were employed. Details of these experiments are reported in
the literature (Wu and Li 1995b; Kanda and Li 1998). In these
tests, crack spacing has been recorded, and macroscopic stress-
strain relations have been measured for all uniaxial tensile
specimens. These tests were conducted at 4 weeks of age and
involved similar composite constitutive properties, in which
composites were processed in an Omni Mixer with a water-
to-cement ratio of 0.27. They are, however, different in fiber
volume fraction Vf (varying from 0.75 to 2.00%) and fiber
length Lf (12.7 to 19.1 mm) as summarized in Table 1. These
specimens showed a broad range of multiple crack saturation
intensity, and their test results are summarized in Table 2.
These test results were obtained as the average of two speci-
mens. It should be noted that the first test series in Table 1 by
Kanda and Li (1998) originally involved two other composites
with lower Vf (0.5%) and younger curing age (1 week). How-
ever, these two composites were excluded in the discussion of
this study. This is because the composite with Vf = 0.5%
showed single cracking behavior without PSH, and the com-
posite at 1 week of age was found to have a different flaw
size distribution.

The current study utilizes the aforementioned experimental
data in Table 2 for two purposes. First, the test result from a
particular specimen (Vf = 2% and Lf = 12.7 mm) is chosen as
the reference data to identify l and thus to determine flaw size
distribution function F of (11). This resulting l is referred to
as lref. Second, the experimental data for the other similar
composites were used to indicate the accuracy of the theoret-
152 / JOURNAL OF MATERIALS IN CIVIL ENGINEERING / MAY 2000
FIG. 8. Determination of Bond Properties by Fitting Single Fi-
ber Pullout Test Data

ical predictions. For composites other than the reference,
is estimated by substituting lref for l in (11) and thentheoryxd

compared with the corresponding measured A ratiotestx .d

close to unity indicates high fidelity of the simulationtheory testx /xd d

of crack spacing using the present theory.

Prediction of Stress-Strain Relation

The tensile test results for composites in Table 2 were an-
alyzed following the aforementioned procedure. This analysis
essentially employed micromechanical parameters specified in
the sources (Wu and Li 1995b; Kanda and Li 1998). However,
unspecified parameters were assumed by referring to other
works in the literature. For example, the slip-hardening param-
eters b1 and b2 were determined by data-fitting of single fiber
pullout test results, as shown in Fig. 8. These parameters are
summarized in Table 3.

Theory validation is explained according to the procedure
in Fig. 4. In the first step of Fig. 4, two major unknowns
among the three, sss and speak, were calculated and tabulated
as in Table 4. The remaining major unknown parameter, εcu,
was obtained by reversing the steps from IV to I in Fig. 4,
and its identification process is explained below.

First, the three parameters, l, c0, and m, were identified to
determine the flaw size distribution function F using the ref-
erence data (Step IV). In this step, lref = 1.19 was obtained
via (12), where the reference data (Vf = 2%) indicated in Table
4 were used. Furthermore, the reference flaw size c0 (=cm) was
calculated as 33 mm by means of (13). Then the assumption
of m = 2 led to the F-function shown in Fig. 9. This F-function
indicates that approximately half of the flaw population, de-
duced from cumulative probability at c̄/c̄0 = 1, is larger than
cm. The F-function thus obtained is assumed to be universal
for all the specimens in this test series.

Second, the minimum flaw size cmc and saturated crack spac-
ing xd were evaluated, and cumulative probability at cmc
TABLE 2. Summary of Composite Test Results

Fiber volume
fraction

(%)
(1)

Test Results

First cracking
stress sfc

(MPa)
(2)

Ultimate stress
speak

(%)
(3)

Crack space
testx d

(mm)
(4)

Ultimate strain
εcu

(%)
(5)

Effective bond
strengtha

(MPa)
(6)

Vf = 0.75 2.27
(2.29, 2.26)

2.49
(2.59, 2.39)

19.2
(17.7, 20.6)

1.40
(1.30, 1.50)

0.88

Vf = 1.00 1.20
(1.21, 1.18)

2.31
(2.43, 2.18)

7.30
(5.25, 9.34)

3.80
(4.20, 3.40)

0.61

Vf = 1.25 1.68
(1.39, 1.96)

2.74
(2.67, 2.81)

4.83
(4.75, 4.90)

4.00
(3.90, 4.10)

0.58

Vf = 2.00b 2.00 3.30 2.20 2.00 0.66

Note: Test results are average of two specimens, and data for individual specimens are in parentheses.
aInverted by using Eq. (6).
bNo individual data were shown in study of Wu and Li (1995b).



TABLE 3. Micromechanical Parameters for Analysis

Micromechanical parameter
(1)

Polyethylene
composite

(2)

Matrix elastic modulus Em (GPa) 23
Matrix fracture toughness Km (MPa m0.5) 0.33
Matrix tensile strength smu (MPa) 1.6
Fiber elastic modulus Ef (GPa) 117
Fiber volume fraction Vf (%) 0.75–2.00
Fiber length Lf (mm) 12.7–19.05
Fiber diameter df (mm) 0.038
Friction bond strength ti (MPa) 0.62–0.66
Slip-hardening parameter b1 0.009
Slip-hardening parameter b2 (31025) 22.5
Snubbing coefficient f 0.5

[=F(c̄mc)] was then evaluated by using the F-function obtained
above (Step III). The parameter cmc was calculated by em-
ploying (10). Fig. 10 shows that c̄mc generally decreases with
fiber volume fraction Vf. This result implies that more flaws
are to be activated in the multiple cracking process, and there-
fore greater intensity of multiple cracking can be expected for
those composites with higher Vf. This expectation is consistent
with the experimental observations (Kanda and Li 1998). Fur-
thermore, the calculated cmc of a composite with Vf = 2% is
larger than that with Vf = 1.25% (Fig. 10). This result is due
to the shorter fiber length Lf used for the composite with Vf =
2%. The potential for PSH behavior being more sensitive to
Lf than Vf has been demonstrated in previous researches (Li
and Leung 1992). Another unknown, xd, was calculated using
(9) and tabulated in Table 4. It is shown that xd decreases with
increasing Vf. In Fig. 9, c̄mc /c̄0 = 1.38 and 0.745 are indicated
with vertical arrows for Vf = 0.75 and 1.25%, respectively. The
corresponding calculated values of F(c̄mc) are 0.646 and 0.219
for these composites. Lower probability was calculated for Vf

= 1.25% than for Vf = 0.75%. This means that more flaws,
which are eventually activated in the multiple cracking pro-
cess, have size beyond cmc for Vf = 1.25%, than for Vf = 0.75%.
The calculation of this result agrees with the observation in
the experiment in which a larger number of cracks was re-
corded for Vf = 1.25% (Kanda and Li 1998). For other com-
posites, F(c̄mc) was calculated and tabulated in Table 4. Notice
that F(c̄mc) for Vf = 2% is identical to (1 2 as thetheoryx /x )d d

data of this composite were used to determine the lref in the
F-function.

Third, for Step II in Fig. 4, the ultimate COD dpeak calculated
is summarized in Table 4. Then was evaluated as illus-theoryxd

trated in Fig. 11, in which is compared with the exper-theoryxd

imentally observed crack spacing The theoretical predic-testx .d

tion appears to be consistent with the test results.
Finally, going back to Step I in Fig. 4, εcu was calculated

using the xd just computed in (7). The theoretical results of εcu

is illustrated in Fig. 12. As shown in this figure, the theoretical
prediction of crack spacing is generally consistent with that
from the test results. Therefore, the three major unknowns, sss,
speak, and εcu, were theoretically evaluated, thus enabling one
FIG. 9. Determined Flaw Size Distribution and F (c̄mc)

FIG. 10. Analyzed Results for Minimum Activated Flaw Size;
●: Lf = 19.05 mm; n: Lf = 12.7 mm

to predict the stress-strain relation of PSH-RSFRCCs using
(1).

The predicted stress-strain relations were compared with the
experimentally measured curves in Figs. 13(a–c), for the com-
posites with Vf = 0.75, 1.0, and 1.25%, respectively. These
figures indicate that the theoretical prediction captures the
trend of the test results for the three cases. However, stress
performance for the Vf = 0.75% [Fig. 13(a)] and the strain
capacity for the Vf = 1.25% specimen [Fig. 13(c)] were not
necessarily predicted with sufficient accuracy. The stress-strain
relation was not estimated for Vf = 2% as these data were used
to identify the F-function.

One reason for these prediction errors may be in the method
of determining fiber/matrix interfacial properties such as bond
strength ti, slip-hardening parameters b1 and b2, which em-
ployed single fiber pullout test (Katz and Li 1996). The inter-
face properties indicated in Table 3 neglect deterioration by
fiber-fiber interaction in the actual composites (Kanda and Li
1998). For example, effective bond strengths for Vf = 0.75%,
which were inverted from (6) by substituting test data to speak,
were found to be much higher than assumed ti as shown in
Table 2.

Note that the obtained cm with (13) is too large compared
with the specimen size, which is 76 3 36 mm in cross section.
This discrepancy appears to be attributed to the hypothesis
adopted in (13), in which a penny-shaped single crack is as-
sumed to be involved in the infinite bulk solid of materials for
simplicity. In reality, however, numerous cracks are present;
their interaction increases the stress intensity factor. Specifi-
TABLE 4. Analysis Results

Composite
(1)

Steady-state
cracking stress

sss

(MPa)
(2)

Ultimate stress
speak

(MPa)
(3)

Minimum flaw
size activate

c̄mc

(4)

Saturated ultimate
crack space

xd

(mm)
(5)

Ultimate COD
dpeak

(mm)
(6)

F (c̄mc)
(7)

Ultimate
crack space

theoryx d

(mm)
(8)

Vf = 0.75% 1.33 1.75 0.163 6.61 245 0.646 18.7
Vf = 1.0% 1.64 2.34 0.115 4.12 2.45 0.410 6.98
Vf = 1.25% 1.93 2.92 0.089 3.07 2.45 0.219 3.93
Vf = 2.0%a 2.50 3.31 0.160 1.74 22.5 — —

aSelected as reference composite and no calculation was made for F(c̄mc) and theoryx .d
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FIG. 11. Crack Spacing Theoretical and Experimental Results

FIG. 12. Predicted Ultimate Strain Based on lref

FIG. 13. Stress-Strain Relation Comparison between Test and
Theory: (a) Vf = 0.75%; (b) Vf = 1.00%; (c) Vf = 1.25%

cally, using linear elastic fracture mechanics, the actual flaw
size a (actual) = a/R2, where R is the ratio of the correction
coefficient in the stress intensity factor expressions between
the case of interaction cracks to the case of an isolated crack.
For R = 1, 3, 5, and 10, the corresponding a (actual) will be
33, 3.7, 1.3, and 0.33 mm. The value of R depends on the
spacing between adjacent interacting cracks. Therefore, the ac-
tual flaw size responsible for matrix failure is considered much
smaller than that obtained with (13). Nevertheless, it is im-
154 / JOURNAL OF MATERIALS IN CIVIL ENGINEERING / MAY 2000
TABLE 5. Parameter l Based on Multiple Crack Spacing Data
Set from Different Composites

Reference
(1)

l
(2)

Vf = 0.75% 1.23
Vf = 1.0% 1.28
Vf = 1.25% 1.79
Vf = 2.0% 1.192(lref)

portant that the minimum activating flaw size cmc is estimated
with (10) under the same hypothesis as (13) (Li and Leung
1992). Hence, cm and cmc are considered equally overestimated,
and the relationship between these flaw sizes demonstrated in
Fig. 9 appears to reflect that in the actual composites. How-
ever, a more advanced hypothesis (e.g., random flaws inter-
acting with each other in composites) is needed to more ac-
curately determine cmc and flaw size distribution function F in
order to improve modeling precision of the stress-strain rela-
tion of PSH-RSFRCCs.

Identifying Flaw Size Distribution and Remaining
Problems

The adopted hypothesis of a unique F-function describing
the flaw size distribution for similar composites should be
checked. For this verification, l was first calculated for the
various specimens following the same procedure as described
in the previous subsection. The calculated values of l are sum-
marized in Table 5, showing that the results of l are very
similar among all the composites. Indeed, the ultimate strain
capacity predicted using different values of l in Tabletheoryε ,cu

5, was reasonably consistent with test results similar to Fig.
12. Hence, it may be concluded that was reproducibletheoryε cu

regardless of reference data selections with similar composites.
The limited data reveal that the presented theory reasonably

predicts the tensile stress-strain relation of PSH-RSFRCCs
having a similar configuration (matrix mix proportion, mixing
process, and age) but is different in fiber volume fraction and/
or fiber length. However, the accuracy of this estimation is not
completely satisfactory. The discrepancies with the experi-
mental data may have been contributed by the individual errors
at different steps in the estimation process shown in Fig. 4, as
well as those in interface property identification described in
Fig. 13. Therefore, accuracy needs to be improved in each of
Steps I–IV. This improvement is left for subsequent studies.

Furthermore, the tensile properties of PSH-RSFRCCs tend
to have rather large variability as implied by Table 2. The
reliability of PSH-RSFRCC’s tensile properties have not been
fully understood as PSH-RSFRCC is a new material with a
history of <15 years. This statistical evaluation should be
achieved based on the clear mechanism understanding such as
indicated in this paper for a next stage. In the next stage, the
variability of micromechanical parameters, other than flaw
size, should be clarified and taken into account in theory.

DESIGN IMPLICATIONS

The proposed theory facilitates the design of PSH-
RSFRCCs to achieve the required material properties that
might be desirable in a given structure. For example, Maalej
and Li (1995) studied a reinforced concrete beam designed to
limit the COD in the concrete cover (replaced by PSH-
RSFRCC) when subjected to flexural load. The COD restric-
tion was aimed at increasing durability of this beam element
under the attack of harmful chemical substances by limiting
diffusion of those substances into the element. The design en-
sures that the COD of the PSH-RSFRCC cover would not
reach the ultimate value dpeak even at the structural ultimate



FIG. 14. Influence of Interface Bond on Resulting Stress-
Strain Relation (Theory)

state of the beam. Furthermore, it is necessary to tailor the
composite such that εcu exceeds the maximum strain expected
in the cover of the beam, so that strain localization would not
occur in the PSH-RSFRCC. By linking dpeak and εcu to micro-
mechanical properties, it is possible to tailor the cementitious
composite to meet the intended structural durability require-
ment of the reinforced concrete beam.

Controlling εcu can be achieved through modifying either
or dpeak, which are expressed as functions of microme-theoryxd

chanical parameters in the proposed theory. This modification
is demonstrated in Fig. 14, which includes the theoretically
predicted stress-strain relations of the composite with Vf =
0.75%. For this composite, εcu is shown to be predicted around
1% in Fig. 14, and this may not be sufficient for certain ap-
plications. In such a case, εcu should be extended, which may
be achieved in various ways. The most common approach is
to increase Vf, whose effect is demonstrated in Fig. 12. How-
ever, this approach does not always work (e.g., due to the
deterioration of workability with increasing fiber content or
due to the higher cost of fibers). Under this restriction, the
proposed theory facilitates tailoring composite constituents
such as frictional bond strength ti, which can be enhanced to
a few times larger by using techniques such as plasma treat-
ment of fibers (Li et al. 1996) to effectively increase εcu. The
effect of increasing ti is rather remarkable as demonstrated in
Fig. 14, which shows that εcu is improved from about 1.5 to
3% when ti is enhanced from 0.62 to 1.0 MPa. Hence, the
proposed theory can be a powerful tool to effectively tailor
composite property for targeted structural performance.

CONCLUSIONS

This study proposes a new comprehensive approach to pre-
dicting the stress-strain relation of PSH-RSFRCCs, in which
the stress-strain relation is assumed to be a bilinear line. This
approach requires theoretical modeling of the ultimate crack
spacing The model employs a probabilistic description,theoryx .d

in which the Weibull function is adopted to represent flaw size
distribution. Identifying the parameters in this function re-
quires at least one set of experimental data on crack spacing.
Subsequently, the crack spacing and stress-strain curves can
be predicted for similar composites with different fiber content
and/or length. The validity of the proposed approach has been
substantiated with the experimental results. This study reveals
the following:

• Flaw size distribution can be assumed unique for similar
composites (with identical matrix mix proportion, mixing
process, and age) even when different in fiber length and
fiber volume fraction.

• Ultimate crack spacing is found to be consistent with
the test results by means of the proposed crack spacing
theory.

• The experimental stress-strain relation of PSH-RSFRCCs
is found to be reproducible by employing the proposed
theoretical approach with reasonable accuracy.

• The proposed approach for the stress-strain relation has
been indicated as a potentially powerful tool for tailoring
composites in order to satisfy targeted structural perfor-
mance.

The proposed stress-strain model contributes to a better un-
derstanding of PSH-RSFRCC’s tensile behavior and should
extend the applications of these composites. However, the ac-
curacy in predicting the stress-strain relation can be further
improved by taking into account factors that are neglected in
the current study, such as the variability of micromechanics
parameters other than flaw size. This refinement is left for
subsequent studies.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

c = flaw radius;
cm = flaw radius responsible for matrix cracking;

cmc = minimum radius of flaw activated during multiple crack-
ing process;

cs = flaw radius when steady-state cracking occurs;
c0 = reference flaw radius;
df = fiber diameter;
Ec = elastic modulus of composite;
Ef = elastic modulus of fiber;

Em = elastic modulus of matrix;
Km = matrix fracture toughness;
Ktip = crack tip fracture toughness;

Lf = fiber length;
m = Weibull modulus;
Vf = volume fraction of fiber;

Vm = volume fraction of matrix;
xd = saturated ultimate crack spacing;
testx d = ultimate crack spacing observed in test;

theoryx d = theoretical prediction of ultimate crack spacing;
d = crack opening displacement;

dpeak = crack opening displacement at speak;
ε = strain of composite;

εcu = ultimate strain of composite;
l = scale factor for flaw size distribution function;
n = Poisson’s ratio of composite;

sc = crack bridging stress of composite;
sfc = cracking stress level of composite;

smu = matrix tensile strength;
speak = peak bridging stress of composite;

sss = steady-state cracking stress of composite; and
ti = frictional bond strength.


