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ABSTRACT

This chapter presents a survey of non-linear fracture mechanics of inhomogeneous quasi-
brittle material. The large scale bridging in the fracture process zone is explicitly modelled as
cohesive spring-like tractions and its implications on crack formation and limitations of
linear elastic fracture mechanics are discussed. A model of tension-softening is described to
illustrate the possibility of relating the micromechanical mechanisms and the material
structure to composite non-linear fracture property. Finally, recent research on experimental
determination of tension-softening behavior in inhomogeneous quasi-brittle materials is
reviewed.

1. INTRODUCTION

A large class of engineering material, including brittle matrix fiber and particulate
reinforced composites, single phase polycrystalline ceramics, and rocks, display quasi-
brittle behavior as a result of a toughening mechanism known as bridging. Bridging occurs
when, for example, fibers crossing a matrix crack in a fibrous composite provide a closing
pressure on the crack flanks. Debonding and frictional pulling out of the fibers drains part
of the available elastic strain energy release into the crack tip zone, and is reflected as
requiring a higher crack driving force. That is, the material appears to be tougher than when
no bridging action is present.
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In fiber composites, bridging actions have been observed in fiber reinforced mortar
[e.g. 1,2, in fiber reinforced thermoplastics [e.g. 3,4] and in whisker reinforced ceramics
[e.g. 5.6]. In particulate composites such as ceramics reinforced with ductile particles [e.g.
71, or in concrete - cement reinforced with aggregates [e.g. 8], the bridging action is
contributed by the particles and aggregates which may elastically rupture, plastically yield,
or frictionally pulled out. In materials like polycrystalline ceramics and rocks, bridges may
be provided by partially broken grains or grain ligaments. Such bridging actions have been
observed in alumina, graphite and glass ceramics {9, 10, 11, 12]. In polymers, bridging by
crazing at a crack tip [e.g. 13} and bridging in certain rubber toughened polymers under
specific conditions have been observed.

The bridging forces, the extent of the bridging zone and the resulting toughening effect
can differ significantly from material system to material system. However, itis possible to
formulate the fracture problem in such materials in a general way based on the notion of a
smeared-out stress versus displacement relationship which could be regarded as a kind of
'‘cohesive' traction acting across the crack tip process zone. This averaged stress-
displacement relationship would include all effects of ligament volume fraction, stiffness,
fracture or yield strength, interface bond properties and other relevant factors.
Mathematically, it is convenient to think .of this cohesive traction as if provided by (possibly
non-linear) springs since the cohesive traction generally depends on the displacement across
the crack flanks.

The analysis of fracture propagation in the presence of large scale bridging zone is
motivated by the need of having an analytic tool for predicting structural behavior,
particularly the ultimate strength, when the material fails by fracture advance, and yet the
LEFM theory suitable for small scale yielding and elastic plastic fracture theory suitable for
ductile material, are inapplicable. This occurs in the quasi-brittle material systerms
mentioned above, especially when the part size is small in comparison to the bridging zone
size. In addition, there is increasing interest in understanding the formation process of a
macroscopic crack, and the prediction of the level of toughening that could be achieved by
various bridging mechanisms in inhomogeneous composite bodies. In this chapter, we first
discuss in Section 2 the modelling of non-linear fracture propagation and the development
of the bridging process zone, based on a given relationship between the traction and crack
flank opening (the spring law) in the bridging zone. A specific spring law is then developed
in Section 3 for fiber reinforced concrete to illustrate the dependence of composite fracture
behavior, including R-curve behavior, on the material structure and on micromechanisms of
deformation. Finally, in Section 4, experimental techniques for determination of the spring
laws of any quasi-brittle material are presented.
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2. FRACTURE PROPAGATION AND PROCESS ZONE DEVELOPMENT

In this section, we shall first examine how the spring laws relate to the uniaxial tensile
behavior of a material system, The contribution of bridging to toughness will be presented
through a generalized spring law description. Subsequently the relationship between a
special type of spring law, a tension-softening curve, and the development of the bridging
process zone is described. The limitation of the theory of linear elastic fracture mechanics
(LEEM), in the presence of a large scale bridging zone will be discussed.

2.1 The Concept of Bridging Forces and its Contributions to Toughening

For convenience, it may be useful to envision a uniaxial tensile response of a brittle
matrix composite reinforced with short frictionally bonded fibers aligned in the direction of
applied loading. Prior to matrix failure, the composite response may be approximated by a
linear elastic stress-strain curve with stiffness given by the law of mixture. After the matrix
cracks, the maximum post-cracking stress may or may not be higher than the cracking
stress, depending on the fiber volume, fiber aspect ratio and the bond strength (Figure 2.1)
Prior to the maximum post-cracking stress, only the fibers along this fracture surface are
carrying the load, and elastic debonding at the fiber/matrix interface may occur, if the fibers
are strong enough not to rupture. When the maximum post-cracking strength is reached the
fibers are fully debonded and slide out with frictional resistance, leading to a softening
behavior with continued crack opening.

If the uniaxial specimen is unloaded at the matrix cracking strength, and then reloaded
from zero crack opening, the tensile load op versus crack opening displacement S would
give the required spring law (Figure 2.2). It should be noted that the spring law is given b’
a relationship between stress and displacement, not stress versus strain. This distinction is
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Fig. 2.1: Schematics of a tensile stress-deformation relationship of a composite
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made necessary by the fact that in most quasi-brittle material systems, macroscopic scale
fracture occurs on essentially a single plane such that classical strain measures would loose
their physical meaning.
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Fig. 2.2: Schematics of a stress-displacement spring law

If we now apply this spring law as a constitutive relationship for the crack tip zone ofa
structure containing a large steady state crack, the stress as a function of location along the
crack line would look something like that shown in Figure 2.3a. The stress ahead of the
crack tip can be described by the classical linear elastic crack tip stress field with intensity
given by K corresponding to the toughness of the matrix. In the process zone, the stress
rises with the crack opening following the spring law. At some point in the process zone
behind the crack tip, the opening will be large enough such that the softening behavior of
the spring will dominate.

In order to consider the approximate effect of bridging on toughening at steady state,
(steady state here means that the process zone has reached a fixed size and simply translates
as the physical crack extends under increasing applied load), it will be convenient to
consider the crack tip region, including the process zone, to be contained in a far field K-
dominant region. Following Budiansky [14], Rose [15], and Marshall and Evans [16},
applying the J-integral [17] for the closed contour shown in Figure 2.4, the three
contributions of the J-integral are:

Jo+J,+J,=0 2.1
The Joo term represents the far field applied load and contains information on the structural

geometry. The Jyjp is the critical J value for advancing the crack against the matrix
toughness. It is generally more rigorous to describe this 'matrix toughness' as one that
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Fig. 2.3: Stress distribution along the crack line for (a) the most general situation, (b) the
case when rising part of the spring law is unimportant or lumped as part of the matrix
toughness, and (c) the case when the softening part of the spring law dominates the fracture
propagation behavior
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includes the possibility of non-straight crack front due to bowing around fibers or bridging
particles. The mechanics of crack front trapping has been studied by Rose [18] and Rice
[19]. Finally Jy is the energy consumed by the extended springs in the process zone. Thus
in terms of energetics, (2.1) implies that the energy release rate associated with far field

Fig. 2.4: J-integral contour around fracture process zone and crack tip

loading is absorbed by the creation of unit matrix fracture surface, as well as by the spring
deforming process. Each of these terms can be written out more explicitly, so that (2.1)
becomes

2 2 2y .2\ &
K(1-v7)_K(-v), fo,(8)d5 22)
E E )

where Ky, is a modified matrix toughness, E and v are the composite Young's Modulus
and the Poisson's ratio, and §* is the critical opening at which the spring loses all load
carrying capacity. Clearly the integral term in (2.2) is just the area under the spring
constitutive law.

Equation (2.2) may be regarded as a generalization of the now familiar fracture criteria
of Irwin [20], Barenblatt {21] and Dugdale [22]. Equation (2.2) reduces to Irwin's fracture
criterion if the bridging zone does not exists, so that fracture propagation is resisted by the
matrix toughness Km only. If, on the other hand, K, is negligible compared to the
bridging term, as in the case of certain fiber reinforced composites with low toughness
matrix, then equation (2.2) reduces to a form similar to the fracture criterion expressed by
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Barenblatt. Finally, if again, K is negligible, and that oy, is a constant independent of 8,
then Dugdale's fracture criterion will result.

In some material systems, such as those with particle bridges which deform elastically
and then fractures (as may be the case for certain particulate reinforced ceramics and high
strength concrete), the softening tail part of the op,(8) curve does not exist, and the bridging
process zone goes out to L only (Figure 2.3a). The amount of toughening for such a
system can be written in terms of a positive spring stiffness (meaning spring force increases
with increasing displacement) determined by the volume fraction, fracture strength and
elastic stiffness of the particles (see, e.g. [14]). In some cases (probably in normal strength
concrete and in alumina), the area under the o, (8) curve up to 81 is likely to be small
compared to the area up to 8* so that the energy in opening the springs up to 81 could be
lumped into an effective Kip, and the process zone contains only a tension-softening part
(Figure 2.3b). In materials like short fiber reinforced concrete, the integral term in (2.2)
contributed mainly by a softening spring reflecting the large amount of energy absorbed by
fiber friction pull-out overwhelms the effective Kmy term, and the stress distribution along
the crack line will be well approximated by that shown in Figure 2.3c.

In certain engineering systems where crack opening must be restricted, it may be
appropriate to neglect the contribution of the softening part of the o, (8) curve to the overall
toughness if stringent crack opening limitation is required. In other engineering systems
such as in concrete structures, certain amount of crack opening is routinely tolerated, and
the part or all of the softening o}, (8) curve may be counted to provide composite toughness.

In all cases, this softening part of the curve is important to withstand accidental overloads to
provide structural integrity.

2.2 Relation Between Tension-Softening And Process Zone Development

We now turn our attention to the case for a composite with a bridging zone in which
the cohesive traction is well represented by a softening o,(8) curve, as shown in Figure
2.3b or 2.3¢, and when the steady state has not been reached. Other cases where the rising
part of the curve is important could be similarly analyzed (see, e.g. [23]). It may be useful
to consider the crack as being in the formation process prior to steady state.

For simplicity, consider a crack growing in an elastic body loaded remotely by Geo
The governing equation for equilibrium gives the tensile stress on the crack line as:

c=o_+ ?Q;éﬁmp&\ 2.3)

crack

where the integral is to be carried over the crack line. A supplementary equation providing
the condition for crack extension is needed and can be written as:
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K.+ [fexo,()dx' =K, 2.4)

bridge

The influence functions G and f in (2.3) and (2.4) embody information on the structural
geometry and the loading configurations. For the numerical illustrations shown below, we
have used those corresponding to a crack of total (including the length of the process zone)
length ¢ in an infinite body (see, e.g. [24]). In (2.3), the stress G is identified as the
bridging traction of, and forms a functional relationship with 8 in the process zone. Thus
(2.3) and (2.4) form a set of integral equations in 8 which in general must be solved
numerically. Various simplifications have been made such as by assuming a linear 6y,(x)
traction distribution in the process zone [25], or by assuming a linear or parabolic shape of
the crack face [26] in the solution of these equations. A complete numerical solution of
these equations have been obtained by Li and Liang {24] for the case where Ky, is small
compared to the bridging integral term in (2.4). This assumption is appropriate for certain
fiber reinforced composite systems but would not be correct for single phase ceramics,
where the Ky, term and the bridging contribution to toughness are probably on the same
order of magnitude {27]. The non-linear fracture model represented by (2.3) and (2.4) have
been employed in various forms by a number of researchers. These include, e.g.
Hillerborg et al [28] in concrete, Ingraffea and coworkers in concrete [29] and rock [30],
Mai and Lawn {31] in a!umina ceramics, and Wnuk and co-workers (see, e.g. references in
the chapter by Wnuk in this text) in polymer.

Following [24], the 83208 solution of (2.3) and (2.4) allows the crack shape profile
and the stress distribution profiles to be determined. Figure 2.5 illustrates a quarter of the
crack shape profile symmetrical about both axes. The characteristics of this profile is that
the crack tip zone closes smoothly as u(x) -> x3/2 whereas the classical LEFM crack profile
u(x) is quadratic in x. This is the case if the presence of the fracture process zone eliminates
the stress singularity at the crack tip.
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Fig. 2.5: The calculated crack opening profile symmetric about the x and y-axis
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The resulting stress profile is shown in Figure 2.6. In approaching the crack tip, the stress
rises to the composite tensile strength and decays to zero as the crack opens in the process
zone. The LEFM stress profile is also shown for reference. These two curves are expected
to overlap should the process zone size Ip reduces to zero. The tension-softening curve
used in this calculation is shown in the insert of Figure 2.6.
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Fig. 2.6: The calculated stress distribution along the crack line

An interesting result of this analysis is the evolution of the process zone (Figure 2.7).
The horizontal dashed line represents the critical opening value d*. When the opening
exceeds this value, the traction is reduced to zero. Four stages of increasing crack opening
displacements are schematically shown on the lower half of Figure 2.7. The first two of
these stages illustrate the growth of this process zone without growth of the physical crack
In the third stage, the physical crack grows with a further extension of the process zone
length. In the fourth stage, the physical crack grows further with a small decrease in the
process zone length. After this, steady state is reached, whereby the process zone lengt!-
remains constant and translates to the right as the physical crack grows.

Figure 2.8 schematically illustrates the same process observed by ultrasonics and in-
situ microscopy technique in a crack wedged open in a Westerly granite [32]. The light
shaded zone denoted as "partially separated with geometrical or frictional resistance to crac
opening" can probably be associated with the inelastic processes induced by the Km
singularity or the increasing branch of the Op-0 curve and the part of the process zone
labelled L1 in Figure 2.3a. This part is not modelled in the present analysis but could be
included as described earlier. The dark shaded zone denoted as "frictional resistance to
crack opening" is likely associated with the softening branch of the Gy-8 curve. The
experimental observations illustrated in Figure 2.8 suggest that only after some growth o.m
this process zone does the physical crack begin to extend, just as predicted by the theoreti
analysis.
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Fig. 2.7: The calculated stages of fracture process zone development

The R-curve of quasi-brittle material, denoting the increasing amount of energy
absorbed in the process zone, has been measured by a number of investigators (e. g. [31],
[33]) in the form of increasing critical energy release rate or apparent fracture toughness
with a certain measure of increase in crack length. It should be clear that in quasi-brittle
material, this increased energy absorption is due to the growth of the process zone as
described above, and that once the process zone is fully developed, the plateau of the R-
curve would be reached. Examples of R-curve calculations are given in section 3.4.

The details of the process zone evolution and translation is obviously related to the
shape of the oy,-8 curve, but less obvious is that they are also influenced by the stress field
surrounding the process zone. This implies that with different loading configurations and
specimen geomelry, it may be expected that the details of the process zone growth observed
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Fig. 2.8: Schematics showing the development of the fracture process zone in Granite
by ultrasonic and in-situ microscopy techniques (adapted from [32])

would also be different [24]. Because the R-curve is associated with the process zone
development, its shape may be expected to be influenced by these same factors. Hence the
R-curve should not be regarded as a material property. As an example, Figure 2.9
illustrates a double cantilevered beam with different loading configurations and the
corresponding R-curves. This point is particularly important as the slope of the R-curve in
association with the point of specimen instability, is sometimes used to extract information
regarded as a material property (e.g. [34]). In some cases where the specimen geometry
and loading configuration is such that the crack tip stress field is similar, such as in a three
point bend specimen and in a compact tension specimen, the resulting R-curve may look
quite similar.
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Fig. 2.9: Two different R-curves obtained for the same material from two different
specimen geometry and loading configurations

2.3 Limitation of Linear Elastic Fracture Mechanics

For the cracked structure described in the previous section, the ultimate load can be
predicted based on LEFM theory. When plotted against a normalized traction free crack
length ag, the LEFM theory predicts a straight line increase of strength from zero to infinity
with decreasing crack size (Figure 2.10). A structural strength higher than the material
tensile strength is unrealistic suggesting the break-down of the LEFM theory at the limit of
small crack. Similarly, the classical simple strength theory ignoring the presence of cracks
in a structure would predict a constant strength (horizontal line in Figure 2.10), again
unrealistic from practical experience. On the other hand, the LEFM and strength theories
have been proven adequate for ideally brittle Griffith type materials and for ductile yielding
materials. These theories are therefore very useful ones in the limiting cases of suitably
(will be explained later) large and small cracks respectively. Between these two limiting
cases, we need a theory more suitable for the quasi-brittle material. The formalism
presented in section 2.2 above can form the basis for such a non-linear fracture theory.
This analysis results in the curve bridging the two limiting extremes, shown in Figure 2.10.
The merging of this curve with those predicted by LEFM and material strength theories
suggests the range of crack sizes when these simplified theories perform adequately.

The analysis presented above results in a natural "material characteristic length” Ich
parameter, defined as G¢E/fi2 or (Kjc/fi)2 where G is the fracture energy, Kc is the
fracture toughness, E the Young's Modulus and f; is the tensile strength. The lch parameter
was first introduced to concrete by Hillerborg [28] (with a slightly different definition of
fracture energy). lch can be conveniently interpreted as the ratio between the slope of the
stress-strain curve (the elastic Young's Modulus) and the slope of the tension-softening
curve of a material if the tension-softening curve is approximated by a linear fit.

0.0
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Fig. 2.10: Strength dependence on the relative crack length based on strength theory, linear
elastic fracture mechanics theory and the present non-linear elastic fracture mechanics theory

The Ich value of a quasi-brittle material is an extremely important material
characterization parameter because it is a stronger indicator of brittleness than say the
fracture energy or the fracture toughness itself. For example, the fracture toughness of high
strength concrete and most ceramics would be higher than that for normal strength concrete,
and yet these materials are generally perceived as more brittle than normal strength concrete,
This is because the Ich value for them is very small due to the disproportionate rise in tensile
strength over fracture toughness. Hence the notch sensitivity increases from concrete, to
high strength concrete to ceramics, due to their decreasing lc values. The contribution of
fiber reinforcement or particle reinforcement in many such material systems is in the
resulting disproportionate increase in toughness over tensile strength by providing an
energy absorption process zone. [Note: the tensile strength and flexural strength in
reinforced composites are not proportional. Toughness increase helps in the flexural
strength but does not necessarily relate directly to the tensile strength.] For example,
toughness increase in FRC is typically in the range of 10 to 50 times while strength increase
is typically in the range of 1.1 to 2 times [2]. For ceramics composites, the toughness
increase due to whisker and particulate reinforcements is typically in the range of 2 to 5
times while strength increase is typically not as significant [7].

In the concrete and rock community, there is increasing awareness that classical LEFM
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based fracture tests often result in underestimation of the true fracture toughness value,
reflected in a size dependence of fracture data. This is illustrated in Figure 2.11 using data
collected by Francois [35] from concrete specimens. Figure 2.10 affords an explanation on
why LEFM based fracture test which violates the small scale yielding criterion should be
expected to yield lower than true fracture toughness. Suppose a measured specimen
(structural) strength is used to interpret the fracture toughness using the dashed line strength
prediction. This would give a smaller I¢h value than the actual value (obtainable from the
strength curve based on non-linear analysis) for the same strength. Since the I¢h value is
directly proportional to Gg, the toughness would be underestimated. Similar limitations to
LEFM applied to rock tests have been suggested by Takahashi and Abé [36]. Figure 2.12
shows the size-dependence of the apparent fracture toughness of Indiana Limestone (from
[37], see also [38]) and predictions made by Li [39] based on the type of non-linear fracture
theory described above.

K, (MPam )
3
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Fig. 2.11: Apparent fracture toughness data of concrete showing size dependence, adapted
from [35]

It is often convenient to convert Figure 2.10 into a semi-log plot, as shown in Figure
2.13. The LEFM line will then have a slope of -0.5. Several sets of data (e.g. Bazant et al
{40] who converted the horizontal axis to a non-dimensionalized 'structural size') have
demonstrated that concrete as a quasi-brittle material follows the type of behavior predictable
by a non-linear fracture theory which explicitly account for the presence of a bridging
process zone. ‘

The material characteristic lengths of some structural materials are given in Table 2.1.
As an order of magnitude estimate, the process zone size may be regarded as roughly one to
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Fig. 2.12: Apparent fracture toughness of limestone showing size dependence, adapted
from [37]. Lines are predicted size dependence from non-linear fracture mechanics theory

Table 2.1: Characteristic Length (I.1,) of some structural materials

Material Material Characteristic Length
(Icp) in mm

Ceramics/Glass

Monolithic Ceramics 0.02-04

SiC Whisker/Alumina (V¢=0.2) 0.27

SiC Fiber/LAS (V=0.45) 0.42

Carbon Fiber/Pyrex (V=0.4) 1.43

Cementitious Materials

Concrete 60 - 160

High Strength Concrete 2-30

Fiber Reinforced Concrete 200 - 1000

Polymers

Thermoplastics 03-20

Fiber Reinforced Thermoplastics 13-3

Thermosets 0.035 - 0.63

Fiber Reinforced Thermosets 1-25
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Fig. 2.13: Strength dependence on crack length

ten times that of the 1ch value. The exact value depends on, amongst other things, the shape
of the tension-softening curve. This rough estimate may be useful in estimating the required
minimum dimensions for LEFM based fracture tests, and in the determination of validity of
LEFM based fracture analysis by comparisons to the minimum physical dimensions in a
boundary value problem.

2.4 Concluding Remarks on Fracture Modelling in Quasi-Brittle Materials

In many inhomogeneous materials, formation of a crack tip process zone enhances the
toughness of the material. Fracture analysis of structures of such materials by classical
LEFM techniques may be hampered by the presence of such a process zone, if the zone size
causes the small scale yielding condition to be violated. A non-linear formulation of fracture
formation and propagation is reviewed for the case where the softening part of a force-
displacement relation describing the process zone spring-type behavior is important.
Results of a sample analysis suggest that the tension-softening curve for such a material is a
fundamental property governing structural strength and R-curve behavior. For such
materials, the material characteristic length lch, is a useful indicator in determining the range
of validity of the simpler LEFM theory.

The general oy,-8 curve is fundamental in another sense. It directly reflects the material
structure and processing conditions, and could be used as a measure of the effect or the
effectiveness of microstructure tailoring in engineered advanced composite systems.
Unfortunately 80::5:0.,4. for measurement of the oy,-d curve is at present still not well
developed although increasing amount of research in this area is inevitable. The following
sections will look at theoretical models relating the material structures of fiber reinforced
concrete to the composite tension-softening curve. Presentation of a new technique for
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measuring the op-8 curve based on the J-integral of Rice [17] applied to a quasi-brittle
material concludes this chapter.

3. Tension-Softening and R-Curve Behavior in Fiber Reinforced Concrete

The introduction of fibers can significantly improve the fracture energy of concrete.
Figure 3.1 [2] shows that with only one percent volume fraction of high modulus
polyethylene fibers, the fracture energy improve by 600 times that without reinforcement.
This toughness increase is mainly due to the alteration of the post-cracking behavior,
enhancing the load bearing capacity even as the matrix crack opens. The resulting tension-
softening curve of fiber reinforced concrete (FRC) is strongly influenced by the
micromechanical failure mechanisms related to the specific type of fiber reinforcement.

Spectra 1% (0.5")
Spe.&Tech. 1% (0.5"
Technora 1% (0.5")
Technora 1% (.25")
Carbon 1% (.25")
Steel 1% (.25")
Concrete
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Fig. 3.1: Fracture energy of some synthetic FRC and other cementitious materials

The enhanced tension-softening process implies an enhanced bridging zone at a
macroscopic crack tip in which energy is absorbed by fiber actions. These actions could
include fiber pulled out against frictional work, fiber pulled out at an angle to the matrix
crack as if going over a frictien pulley (a snubbing process), and fiber elastically or
inelastically elongated and/or ruptured. Some of these actions are most conspicuous in a
high modulus polyethylene FRC {41] and may also occur in other composite systems. In
this section we review a theoretical model [42] which combines the statistics of fiber
distribution and the mechanics of fiber action to predict the tension-softening curve of such
FRCs. It should be noted that the assumptions used in this model may not be applicable to
other material systems. However, the model does serve to illustrate how a certain non-
linear fracture resistance property of an inhomogeneous material could be predicted based
on the material structure and failure mechanisms. This section ends with a discussion of the
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effects of fiber pre-treatment on composite properties as indicated through an R-curve
behavior analysis in relation to fiber bridging properties.

3.1 Composite Model

The following assumptions are adopted: (1) the fibers have 3-D random distribution in
location and orientation; (2) the fibers are straight with cylindrical geometry; (3) the fibers
behave linear elastically; (4) the fibers rupture when its axial stress reaches the fiber strength
oy; (5) the Poisson's effect of the fiber on pull-out is neglected; (6) the fiber/matrix bond
is frictional and the elastic bond strength is neglected. The frictional bond strength may
exhibit slip hardening or weakening behavior. In addition, the model assumes that the
effect of fiber pull-out from matrix at an oblique angle can be characterized by a snubbing
friction coefficient, f.

Figure 3.2 shows a fiber of length L arbitrarily located with its centroid at a distance z
from the matrix crack plane, and with an orientation angle ¢ to the tensile loading axis.
Only fibers with a positive embedded length £, defined by

oz 3.1
2 cos¢

would cross the crack plane and provide the bridging action. For the case of uniform fiber
length, the probability density function p(z) of the centroidal distance z is

ﬁANvHMNI \«»\OMNMP\\N (3.2)
f

matrix crack plane

Fig. 3.2: A fiber crossing a matrix crack
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For 3-D random orientation, the probability density function, p(¢), of the inclining
angle ¢ is given by [42]

p($)=sing forQ0<¢<sn/2 (3.3)

The problem of two-sided fiber pull-out at ¢=0 illustrated in Figure 3.3a will be
described in the following section. For now, we tumn our aitention to the relationship of the
force-displacement (P-8) curve of a fiber arbitrarily oriented to that of a fiber with ¢=0.

For a fiber with the same embedded length £ and with the same end slippage distance
(s(0)), but with a non-zero inclining angle ¢ (Figure 3.3b), the bridging force will be
increased. However, the distribution of the fiber axial force inside the matrix will still be
the same for these fibers, irrespective of their inclining angles (¢). Using a snubbing

friction coefficient, f, Li et al [43] related the bridging force for angle pull-out to that for ¢ =
0:

Pl,=e"Pl,_, (3.4)

where f is an interface material parameter to be determined experimentally by single fiber
pull-out test at various angles. The snubbing friction coefficients for nylon and
polypropylene have been determined to be 0.99 and 0.70 respectively [43].

During the loading phase (dP/d8 > 0), the crack separation for inclined fibers can be
calculated from that of ¢ = 0 using superposition:

_Pl,-Pl,,

3\,
m\>\

L+6l,_, (3.5)

where Ej is the fiber elastic modulus, Af is fiber cross sectional area, and L is the total
slippage of the fiber ends. During unloading after reaching the peak load, part of the elastic
elongation of the longer fiber embedded segment is recovered. The amount of the recovery
depends on the snubbing friction force. Since the recovery occurs only after the shorter
fiber segment has begun to slip out (i.e. when s1(0) > 0), and the magnitude of this
recovery is in general much smaller than the slippage distance, the recovery during
unloading is neglected for simplicity. By so doing, 8|4 can always be determined from
m_euo for the same £ and L from (3.5), without the need of calculating the pyll-out
response directly for each £ and f. Equations (3.4) and (3.5) provide the P-3 relation (for
any ¢) sought for.
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Fig. 3.3: (a) Two-sided fiber pull out for a fiber aligned in the direction of the tensile
loading axis. The fiber has a length of Lt and a short embedded length of 1, with end
slippages s1(0) and s2 (0). A bridging force P relates to a crack opening &; (b) Two-sided
fiber pull out for a fiber oriented at an arbitrary angle ¢ to the loading axis
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To deduce the tension-softening curve for the composite, we may compute the traction
transmitted across the matrix crack by integrating the force contributions from those fibers
which are active in the bridging action. Thus for each crack opening 8, the composite
bridging stress Gy, may be obtained from

12

V, Y% caccos(as
o, =t ==L [{[7" " P(£.0.8)p(9)d0 p(2)d: (3.6)
[ =0

A +=0

with p(z) and p(¢) given by (3.2) and (3.3). The integration limits in (3.6) exclude those
fibers which do not cross the crack plane. The constituent parameters needed for (3.6) are
(1) Fiber geometry -- diameter dg and length L, (2) fiber properties -- elastic modulus E¢
and fiber strength o7, (3) fiber volume fraction Vi, and (4) properties of fiber/matrix
interface -- bond strength T or slip-weakening/hardening law t-s, and snubbing friction
coefficient f. The fracture energy of the composite may be obtained by integration of (3.6)
with respect to the crack opening. Equation (3.6) suggests that the Op(D) scales with fiber
volume fraction, and inversely with fiber diameter (since P varies linearly with dp).

3.2 Single Fiber Pull-Out Model

The mechanics of pull-out of a single fiber embedded in a brittle matrix and aligned in
the direction of tensile loading (Figure 3.3a) has been variously investigated, most notably
in the form of shear lag models [e.g. 44, 45, 46, 47]. These models either assume that the
debonded interface is traction free or is governed by a constant friction. In Wang et al
{48,49], the mode] assumes a frictional bond at the fiber/matrix interface, neglecting any
effect of an elastic bond due to expected low adhesion between polymer fibers and cement
matrix. However, the frictional resistance is made to depend on the amount of slip so that
either slip weakening or hardening phenomenon can be incorporated. In addition, the
matrix is assumed to be much stiffer than the fiber and its deformation is neglected. The
inclusion of slip-dependent frictional bond strength is motivated by observed fiber abrasion
and the peculiar fiber pull out load-displacement curve measured for certain polymer
fiber/cement matrix combinations.

The solution procedure of Wang et al [48,49] is illustrated in Figure 3.4 for the case of
a slip-hardening frictional bond. In this case the short embedded end will be completely
pulled out, whereas the long embedded end may have had some slippage. Geometric
compatibility requires that § = 8; + 8 while equilibrium enforces the condition that P| =
P,. The latter condition implies that once the short fiber segment load Py decreases, the
long fiber segment must also unload with partial retrieval of the slipped out segment back
into the matrix, rather than following the complete direct pull-out curve indicated by the
dashed line in Figure 3.4.
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Fig. 3.4: Schematics of the modelling procedure

To analyze the direct pull-out problem, consider the shorter fiber segment of length L
before loading and during pull-out (Figure 3.5). The fiber slip s(x) at the material point x

along the fiber length is given by the sum of the slippage distance of the fiber end s(0) plus
the elastic elongation of the fiber segment between 0 and x

s(x) = s(0) + ﬁmS&

3.7
where the axial strain £(x) may be directly related to the axial force P(x)
£(x) = —a—P(x) (3.8)
a% E, .
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P(x) may be obtained from equilibrium considerations of a free body diagram of the fiber
segment between 0 and x. Thus

P(x)=Fy+ [ t(0)md, [1+ £(0))dx

3.9
and Py is a constant representing the fiber end anchorage effect when the fiber end slips (Pg
= (} before complete debonding). The shear stress T in general is a functional of local slip
s(x) so that

T(x) = 7(s(x)) for x + s(x) <L (inside matrix) (3.10a)
T(x)=0 for x +s(x) 2 L (outside matrix) (3.10b)

3

Fig. 3.5: Geometry (a) before and (b) during pull out of a fiber

Equations. (3.7) to (3.10) are in general coupled nonlinear equations and have to be solved

numerically. At each loading stage, the load and the corresponding displacement at the
exiting end of the fiber could be obtained from

=P(x=L) (3.11)
6, =s(x=L)

(3.12)
To analyze the two sided pull-out problem, we now turn our attention to the behavior

of the longer embedded fiber segment, illustrated in Figure 3.6. This fiber behaves exactly
as described above for the shorter fiber segment, at least up to the maximum load Py ax,
after which unloading of this fiber occurs. Figure 3.6a illustrates the fiber condition at P =
Prax» and the slip distribution, the axial force and strain distribution at this state are labelled
with a subscript m. In particular, the fiber axial force decreases from Pmax at the exit end to

165
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Fig. 3.6: Schematics of long embedded segment showing the state of fiber axial load
distribution at (a) stage when short embedded segment reaches peak load; (b) subsequent
stages when long segment has to unload

Py at the embedded end. During unloading, i.c. P aonnommm:m mn.oB its n.ExmB:B value of
Ppnax» part of the fiber retrieves back into the matrix against frictional resistance. Suppose
the point x=h demarcates the boundary between the retrieving segment and the rest of the
fiber which has not been affected by the unloading, then

P(x)=P,(x) (x£h) (3.13)

ex)=¢,(x) (x<h) (3.14)

s(x)=s,.(X) (x<h) (3.15)
For x>h, the axial force is found from the equilibrium conditions as:

P(x)=P,(h)— hgsi\: +e()ldx (x>h) (3.16)

and the slippage distance at x is given by the slippage distance when P = P54 plus the
slippage distance due to fiber elastic unloading:

Fracture in Inhomogeneous Materials 167

BN R i it o 4 i e

S =5, (0 + [ e (M —e(dx (x> h)

3.17)
Equations (3.8) and (3.10) are still applicable in describing the P-¢ relation and the t-s
relation respectively for the retrieving fiber segment. Equations (3.13)-(3.17), together

with (3.8) and (3.10) can be solved and the pull-out load and displacement at the fiber exit
end can be determined:

B=P(x=L,)

(3.18)
8, =s(x=L,)

(3.19)

By decreasing h from Ly (no unloading when Py = Pp,,, ) until Py =0, the P»-6
relationship for the unloading process can be obtained. The complete load versus crack
separation curve P-§ is then calculated by adding the displacements of both short and long
fiber segments together (8 = 81+385) for the corresponding load (P =P = P5). This P-§
relationship is used (denoted as w_euO and m_euov in Equations (3.7) and (3.8) to compute
the fiber load and crack separation for fibers with the same embedded length (£ =L{) and
fiber length (L= L + Ly) arbitrarily oriented to the loading axis.

Wang et al [48] represented the 1-s functional relationship in a quadratic form. They
found that the model requires a slip-hardening representation in order to match data of
certain synthetic fibers while a slip-weakening representation is required to match data of
steel fibers. Figure 3.7 and 3.8 show the experimentally determined P-8 curves for a
synthetic fiber and for a steel fiber pulled out from a cement matrix, and the corresponding
model 1-s and predicted P-8 curves. The steel fiber pull-out data is from [50].

— P
- 3

T (MPa)

0 20 40
s (mm)

v T

0 20 40 60 80

Crack Separation § (mm)

Fig. 3.7: Force-displacement relationship of single nylon fiber pulled out from a cement
matrix. Experimental data (4 sets) fall in shaded area. Thick solid line is model prediction
based on the slip-hardening curve shown in insert on left. Test configuration is also shown
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Fig. 3.8: Force-displacement relationship of single steel fiber pulled out from a cement
matrix. Experimental data is shown as dotted line. Solid line is model prediction based on
the slip-hardening curve shown in insert on left. Test configuration is also shown

3.3 Predicted Composite Tension-Softening Curve and Comparisons with Experimental
Observations

As expected, the predicted composite tension-softening curves are sensitive to the
nature of slip resistance (slip-hardening or slip-weakening), the fiber and matrix properties,
and fiber geometry. A specific result was obtained for two mixes of high modulus
polyethylene fiber reinforced mortar with material and geometric parameters given in Table
3.1. Both the model predicted curve and the experimentally determined curve based on a
specially devised uniaxial testing technique [51,52] are presented in Figure 3.9. In Mix S1
the matrix material is a normal strength mortar with tensile strength of approximately 2.5
MPa. From SEM studies of the fracture surface, a large amount of surface spall was
observed, while the high modulus polyethylene fibers appear not to be abraded [53}. In
contrast, no spalling was observed in the high strength mortar matrix Mix SH with a tensile
strength of approximately 3.4 MPa. Although abrasion of high modulus polyethylene
fibers has been observed under the SEM [53] in a similar mix, the same constant bond
strength as for Mix S1 was employed on account of the short length of the fiber used in the
Mix SH. The experimental testing technique and data on bond strength of various synthetic
fibers can be found in [43,54,55]. For the snubbing friction coefficient f, angle pull out
data for polypropylene was used although a direct measurement of f of high modulus
polyethylene fiber embedded in both types of mortar matrix would have been preferred.

The comparisons shown in Figure 3.9 suggest that the model predictions are
reasonable, with the exception of the initial part of the curve for Mix §1 which may reflect
the matrix spalling effect not accounted for in the model.
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Table 3.1: Material and Geometry Parametric Values Used in the Prediction of the Tension-
Softening Curves in Figure 3.9

Parameters Mix S1 Mix SH
dp (mm) 38 38
L¢ (mmy) 12.7 6.3
Ef (GPa) 120 120
o; (GPa) 2.6 2.6
Vi (%) 1 0.6
T (MPa) 1.02 1.02
f 0.7 0.7
Stress
w
. Experimental
e m Theoretical

Mix S1
127 mm 1%

1 Mix SH
*~06.35 mm 0.6%

0 - . e
6

0 2 4
Crack Width (mm)

Fig. 3.9: Comparison of predicted and measured tension-softening curves for high modulus
polyethylene fiber reinforced mortar. Mix S1 has a normal strength matrix. Mix SH has a
high strength matrix

Li et al {42] found that the fiber length plays a significant role in controlling the
composite behavior. When fiber length (for a given snubbing coefficient) is not long
enough to cause fiber rupture, the fracture energy increases approximately quadratically
with fiber length. However, long fiber length also implies more fiber ruptures and loss of
reinforcement bridges. The result is a sharp drop shortly after peak load in the tension-
softening curve and a corresponding reduction in fracture energy. Figure 3.10 shows the
tension-softening curves schematically for three composites with everything identical except
fiber length. The corresponding effect on the process zone bridging stresses is also
illustrated.
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Fig. 3.10: Effect of fiber length on (a) the tension-softening oc~.<.n and (b) the stress-
distribution in the process zone. Fiber length is normalized by critical length L¢ [43]

3.4 R-curve Studies

Because of the intimate relation between interfacial properties and the Snmmo:-mo:n:_mN
curve, the relation between the tension-softening curve and process Nm.Sa development, ”:“=
the relation between process zone development and the R-curve (section 2.2), im%.oi nmﬁ.
our attention to analyzing the R-curve of FRC in iior fibers have been Enwmnw_ﬁm :m %:Eo
to change the interface properties. This discussion is based on a R-curve mode om doutl
cantilevered beam (DCB) specimen described in [56]. By treating the beams Wm ::: m: cm
pure bending, its compliance as a function of beam length (equal to the crack length) ca
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computed from elementary beam theory. This allows the energy release rate and the stress
intensity factor Ka to be related to the applied loading, the crack length, the elastic modulus
and Poisson's ratio, and the polar moment of inertia of the beam cross section. Similarly,
the stress intensity factor, Kp, at the matrix crack tip due to fiber bridging stresses o (x)
acting as a closing pressure was found to be

K, = l.ﬁ. o,(x)b(a- RV?A_ - <Nv_-_:§ (3.20)

where a is the traction-free crack length. For equilibrium crack growth in the matrix, the
total stress intensity factor, K, + Ky, can be considered to be equal to the matrix toughness,

Kn:

K,+K, =K, 3.21)
For a given load, solving (3.21) requires an iterative process to find the crack length,
a. Once a is found, the corresponding composite fracture energy, G, can be calculated from

a 25(x) 1-v* _,
G=| o(x)——dr+——K 3.22
_.‘; ) ox E " ¢ )
and the crack resistance, K, from Ky = ~m0\2-<w ) 172 Note that when the process zone

becomes fully developed, Kg will reach its steady state value, and the corresponding G is
given by

& 1-v?
G=| o8)ds+ lmclﬂ (3.23)

where the integral part is simply the area under the 6p,-3 curve and o,(8)=0 when & > §*.

This model was used to study R-curve measurement of Visalvanich and Naaman
[57,58] in steel FRC tapered DCB. Typical values of E=21.5 GPa, v=0.18, and Kic=1
MPa m1/2 for the matrix and experimentally determined 6},-8 curve reported in [58] were
used for the calculation. Depending on the choice of Iin or Iyax, Which correspond to the
smallest and largest cross-sections of the DCB respectively, in the calculation, different R-
curves were obtained. Their experimental data fall essentially in between these two limiting
curves (Figure 3.11). As expected, for small crack extension (Aa), the experimental data lie

closer to the R-curve for I i, , and for large Aa, the data bend toward the curve for Inax-

The tension-softening curves for three composites reinforced with one percent nylon
monofilaments was approximated as shown in Figure 3.12a based on single fiber pull-out
test for three pretreated fibers [54]. Case | was prewashed in hot water to remove the oil  °
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finish and may have enhanced the abrasion effect. Case .N was o.oEma i;:. a m._ﬂmoaoawm”m“u
mold release agent to reduce the frictional resistance against sliding of the ::.a wom. Eo, S
was mechanically crimped by running the fiber between a set of gears. ?.z:m case X vﬁ
out resistance is significanty improved and could lead to fiber E?E.n during the pu ro:
process. The predicted R-curve based on the theoretical model a.mmodvoa mdwé "om.ﬁ. wﬂ )
with these bridging op,-8 curves are shown in Figure 3.12b. Itis seen .,:w: in all oﬂwa”mﬁ e
bridging zone contribution to fracture toughness far exceeds that of the matrix toughness.
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\m) Thickness
K =21n.
o,
M\ b=0.5"
~
K m_‘:m.x
— Prediction _‘_|NL
o Experiment 1" =254 mm
| T 1 T T
0 04 08 1.2

Aa(m)

Fig. 3.11: Predicted and experimentally determined R-curve of steel FRC DCB
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Fig. 3.12: (a) FRC 6-5 curves with fiber pre-treatment for 1) ?‘m-émm.:mP 2) fluorocarbon
. agent coated & 3) mechanically crimped, (b) corresponding predicted R-curves
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Comparison between case | and 2 indicates that the surface finish can amount to a 50%
change in fracture toughness. Case 3 suggest that mechanical interlock due to fiber crimps
could lead to further increase in compoesite fracture toughness. In addition, the rise of
apparent fracture toughness is much more rapid so that cracks could be arrested at an early
stage before a long length is developed.

3.5 Concluding Remarks on Tension-Softening Models of FRC

This section discusses a theoretical model of post-peak behavior of short fiber
reinforced brittle matrix composites with particular attention to the tension-softening
behavior of synthetic fiber reinforced concrete, for which comparisons were made between
experimental data and theoretical predictions. The model accounts for several physical
processes related to the material structure and which appears to govern the tensile properties
in such composites. These physical processes include the effect of fiber abrasion during
fiber pull-out and result in a slip-hardening interfacial bond strength, as well as a snubbing
effect exhibited during fiber withdrawal inclined to the matrix crack. The randomness of the
fiber location and orientation is accounted for statistically. It is found that composite tension
softening curve is strongly influenced by the slip-hardening behavior and fiber length.

A simple R-curve model is reviewed. This model was used to make predictions of R-
curves based on various tension-softening relations. The effect of fiber treatment on R-
curve behavior was discussed and found to play a significant role in determining composite
toughness and the shape of the R-curve.

4. EXPERIMENTAL DETERMINATION OF TENSION-SOFTENING CURVES FOR
QUASI-BRITTLE MATERIALS

In section 2, the post-cracking tension-softening behavior has been shown to control
the growth of fracture in quasi-brittle materials. Section 3 presents a model of tension-
softening curve for fiber reinforced concrete in relation to its failure mechanisms and
phrased in tenmns of the material structure. In this section, we discuss methods for the
experimental determination of tension-softening curves for quasi-brittle materials. Much of
the examples are given for concrete and fiber reinforced concrete, but the test methods and
particularly, the principals behind them are expected to be useful for other quasi-brittle
materials such as rock and ceramics as well.

Two main classes of test are described. The first class involves the direct uniaxial test,
and the second involves a special technique which employs non-linear elastic fracture theory
to manipulate flexural type test data into tension-softening curves.
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4.1 Uniaxial Tension Test
4.1.1 Stability and Other Considerations:

The uniaxial tension test is the most direct way of o_uﬁ.mw.:._:m the uniaxial M.o:w_wo:w:o
behavior in any material. However, its application to obtaining the post-cracking te .
behavior have several demanding requirements which are difficult and not always met by
measuring techniques. These requirements include [51]:

1. The testing fixture, including the testing machine, the _o.m&sm grips, and mro wcsom_wq__wma
cwgooz them, must be stiff so as to avoid unstable unloading after the specimen pe
is reached;

2. Misalignment of the specimen should not be introduced by the loading grips to avoid
imposition of an unknown initial stress field on the specimen;

. . . s in the
3. The testing fixture should have high rotational rigidity to v.8<9: bending strains
specimen and thus to ensure a uniform strain across the specimen.

The first requirement is related to the concept of stability. .E gure 4.1 E:mﬁzow the

chain of load transfer from machine to grips/fixtures to the %MQBM: M“E mhmzv\o%nﬁo M<o
i he load is transferred through an
fracture surface. One may conceptualize that t ough 19 e e
i i i i i ly stiffness k = 1/c) contributed by a co

spring with a certain compliance c (or inverse . . contr :
._Mmaw:m system’ comprised of the testing machine, the loading grips, E:o:ozm.cozﬂ.ooz
themn as well as the volume of specimen material outside the fracture zone. During the

onnections/joints

Specimen

Fracture plane Loading head/machine frame

128
=<0 00 ¥ OO O

| |— Stiffness k
S

Fig. 4.1. Schematics of load transfer from machine to fracture plane. .;o._g&:m %wmwﬁ, Mm
ooroovaw:noa as a spring with stiffness k, with load point motion described by 0 an
fracture plane opening by amount S
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tension-softening process as the crack plane opens, the load is continually reduced, and the
loading system must unload to maintain equilibrium. This process may be represented
graphically as following unloading lines with slopes determined by the loading system
stiffness (Figure 4.2a). When the loading system is compliant, the unloading lines are
closer to being flat on a plot of load (stress) versus displacement. When the loading system
is stiff, the unloading lines are closer to being vertical. In the unloading stage, the
constitutive relation of the fracture plane may be represented by its tension-softening curve.
The load point displacements 8y and fracture plane opening & for each system are traced in

Figure 4.2b, indicating a loss of stability when the unloading stiffness matches the slope of
the tension-softening curve for a compliant system.

For the above reasons, attempts at stiffening machines have been made by several

researchers. Petersson [59] used two parallel columns which were heated to act as a
displacement controlled loading machine. Reinhardt [60] used electronic control to carry
out cyclic loading by monitoring the load drop of the load cell. Gopalaratnam and Shah
[61] used a electronic feedback system which monitor the crack opening. These techniques
met with various degrees of success in making a stiff loading system. It should be
mentioned that the load system also involves the specimen volume. Large specimen volume
contributes to a reduced system stiffness and should therefore be avoided.

° 5

A (a) A (b)

low k low k

high k
high k

'mo

Fig. 4.2. Stability consideration during the unloading process. (a) Unloading lines with
slope corresponding to spring stiffness k are superimposed on fracture plane tensile
constitutive behavior. Points of equilibrium are indicated by square dots. A point of
instability occurs for the spring with low k at the stage indicated by a circular dot. No
instability occurs for the spring with high k. (b) Trace of load point displacement plotted
against fracture plane opening. For the spring with low k, the fracture plane opening
accelerates to infinity as instability is approached
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The issues of system stiffness, system alignment and rotational rigidity are each
discussed in [51]. Here we note that the problem of alignment often contributes to a
reduction in measured tensile strength. This problem is particularly serious in brittle
material sensitive to edge flaws which propagate across the specimen when bending stresses
are introduced. Thus what is measured is really the residual strength of an unintentionally
notched specimen under bending loads rather than the true tensile strength. In a tougher
material such as composites with adequate fiber reinforcements, traction is maintained
across an initiating crack, so that this problem may be expected to be less serious. In the
following, we discuss an especially simple test technique used by Wang et al [51] for
synthetic fiber reinforced concrete. Test methods and data for ceramics can be found in
[62], for rocks in [62], for fiber reinforced thermoplastics in [4].

4.1.2 Test Set-up and Results:

The test set-up employs a 1331 servo-hydraulic Instron machine of 100 kN
tension/compression capacity. The loading fixture consists of a pair of heavy steel plates
tightly connected to the testing machine. One plate is bolted to the load cell and the other to
the actuator piston, as illustrated in figure 4.3. The test specimen is glued to the loading
plates with fast curing epoxy adhesive. By elimination of "soft" connections between
specimen and machine, this set-up reduce the system compliance to a minimum as well as
providing the maximum restrain from end rotation. In addition, the in-situ curing of the
adhesive excludes non-uniform initial strains in the specimen with close to perfect
alignment.

load cell (fixed to frame)

[@— steel connector (diameter 76, heigth 73)

steel loading plate (100 x 100 x 25.4)

=~ FRC specimen
m LVDT
& epoxy adesive

actuator piston

Fig. 4.3. Schematic illustration of loading fixture. Dimensions are in mm
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.

.Hio LVDTs (linear variable differential transducers) were used to monitor the crack
opening displacement, both with a displacement range of 5.08 mm. The LVDTs were
Bo:nﬁoa on two opposite sides of the specimen with aluminum holders glued to the
specimen surface. The nominal measuring gage length was 12.7 mm. Signals of load
anr openings of the two sides, and the machine piston displacement were recorded _uvw a
micro oanEon. The test was performed at constant speeds of machine piston movement.
Comparisons of the two LVDTs on either side of the specimen indicated no noticeable

bending effect in the specimen. Details of specimen preparation and testing procedure can
be found in [{51].

. After completing a uniaxial tension test, the data should be interpreted as shown in
Figure 4.4. Correction for elastic behavior could be important for a material like concrete
_uc.ﬁ is likely to be unimportant for fiber composites. The tension-softening curves ocamzo,a
using the method described above for several synthetic FRCs are given in Figure 4.5.
5.8%38:03 of the shape of these tension-softening curves in relation to material
:.:203.:952 and failure mechanisms are given in [41]. Despite the successful use of this
simple method in fiber reinforced concrete, its application to fiber reinforced high strength
concrete and to mortar have met with difficulty, either due to inadequate machine stiffness
or due to machine inaccuracy in displacement control, or both. An alternative method
perhaps more suitable for quasi-brittle material with smaller material characteristic length Ich
than fiber reinforced concrete is described below.

Fracture process zone

' '
AL=€L+ § b)

Fig. 4.4. Procedure for deduction of tension-softening curve from uniaxial
tension test data of a quasi-brittle material.
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shows average crack opening values, 8, 8 5 expressed as a function of load point
displacement A. &y was measured at the initial crack tip, 87 at a point 6.35 mm (equal to
Aa) above the crack tip, both in the short cracked beams. The crack separation used in the
procedure described above is then obtain from the average 8 = (81 + 82)/2. AJ-A
relationship was calculated using numerical integration. This result combined with the A-8
relation provides the J-8 curve, as shown in Figure 4.1 1. Numerical differentiation of the
J-8 curve was achieved using Taylor expansions at five consecutive points I(8-g), J(3-h),
1(D), J(8+j), J(8+k) and solving for ¥(8). Figure 4.12 shows the deduced tension-
softening curve. It shows an initial rise from 6,,=0 to oy, =f; before descending back down
to 6=0. The area under this initial ascending part may be interpreted as the lumped energy
consumed by the fracture resistance of the matrix and the rising part of the spring law (see
Figure 2.3) prior to the formation of bridging action in the fracture process zone and
therefore should not be regarded as part of the tension-softening 0,0 relationship. Figure
4.13 shows the corrected 0,,—9 curve as well as the curve obtained from the direct tension
test. The agreement is reasonably good. Test curves for other materials based on this

method is shown in Figure 4.14. Further comparisons with direct tension-test results could
be found in [66].

A major disadvantage of the method just described is the need for data differentiation
which often exaggerates any error encountered in the experimentally recorded data. For this
reason, it is recommended that a direct uniaxial tension test be carried out for the tensile
strength of the same material for use as an accuracy control.
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Fig. 4.9. Load vs load displacement Fig. 4.10. Load displacement vs crack opening
4.2.4. Concluding Remarks on Tension-Softening Curve Measurements

Two types of experimental techniques for the determination of the tension-softening
curves for quasi-brittle materials are described. Each has their own advantage and
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disadvantages. Results from the direct tensile test is easy to interpret, but the test is difficult
to carry out especially for quasi-brittle material with high strength or low lch,. An alternative
test method using non-linear fracture mechanics theory could be used to indirectly determine
the tension-softening curve. This method has been numerically and experimentally verified
for several quasi-brittle material and for several testing configurations.
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Fig. 4.12. Deduced tension softening curve

5. FINAL REMARKS

This chapter presents the theory of non-linear fracture mechanics of inhomogeneous
p:w&-cz.z_n composites. Non-linear spring laws are used to describe the closing pressure
acting on the crack flanks in the crack tip process zone. It is shown that such spring laws
control the development of the fracture process, leading to the possibility of large scale
'yielding', and invalidating the use of linear elastic fracture mechanics.
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From a materials performance point of view, it is mcmmomﬁo.a 5.& the bridging mv:” ma
action can substantially elevate the material toughness, 5=m. motivating the attempt 8. Mn M
material structure to the tension-softening spring law. &::_n such B.oan_m may provide
rational foundation and potential of systematically Szn.ﬁsm the material mn,EMES to
improved material performance, much more research is needed and expected.
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Fig. 4.13. Comparison between directly measured and deduced tension-softening curves
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Fig. 4.14. Tension-softening curves of several quasi-brittle materials measured by the
indirect J-integral based technique
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Finally, the need to have a simple means of measuring the spring law for a given
quasi-brittle material system cannot be overstated. Such development should help in
providing constitutive relationship for modellin g structural behavior on the one hand, and

also assist in evaluating the post-cracking performance in inhomogeneous quasi-brittle
materials.
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