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A B S T R A C T

The mechanical behavior of Engineered Cementitious Composites (ECC) is strongly dependent on the bridging of
cracks by fibers. Due to the bridging action of fibers, tensile and shear stresses can be transferred through cracks
in ECC members. In this study, a micromechanics based theoretical model is proposed to describe the shear
transfer mechanism on the crack surface due to fiber bridging effect. The model focuses on flexible fibers and
both the normal stress along the crack opening direction and the shear stress transferred across the crack surfaces
are derived under the coupled effect of crack opening displacement (COD) and shear sliding. With the proposed
model, the mechanism of fibers contributing to the shear transfer can be understood and the effect of various
micromechanical parameters can be investigated. The simulation results can provide insight on the behavior of
ECC under shear loading when cracks are propagating under mixed mode.

1. Introduction

To overcome the brittleness of concrete and the difficulty to control
the formation and opening of cracks, various approaches to reinforcing
cementitious composites with fibers have been made. Specifically, High
Performance Fiber-Reinforced Cementitious Composites (HPFRCC),
which is highly ductile material exhibiting multiple cracks and strain-
hardening characteristics under uniaxial tensile stress, has been de-
veloped and gained ground in research and application [1–3]. As a class
of HPFRCC, Engineered Cementitious Composites (ECC) is designed
according to basic principles of micromechanics and fracture mechanics
[4–6]. Prepared with cement, mineral admixture, fine aggregates
(maximum grain size is usually 0.15mm), water, superplasticizer
and<2% volume of short fibers, the ultimate tensile strength of ECC
can reach over 3%, while the opening of each crack is usually controlled
to be< 60 μm [7–9].

Due to its ultra-high tensile durability and energy dissipation ca-
pacity, ECC is being considered for replacing conventional concrete in
structures in high-intensity earthquake regions [10]. The shear beha-
vior of ECC members has therefore attracted the attentions of many
researchers and designers. While obvious improvement in performance
has been demonstrated by various experiments on shear critical speci-
mens [11–21], most investigations on the behavior of shear-critical ECC
structural members are experimental in nature and limited in modeling
aspects. In a number of studies [22–24], models for predicting the shear

behavior of ECC members have been proposed, but all of these models
are modified from models for concrete according to empirical test data.
Without considering the effects of fiber, matrix and interface on the
fundamental crack bridging mechanisms, these models are limited in
accuracy and applicability to general cases.

The highly improved tensile ductility of ECC compared with or-
dinary concrete is achieved by the crack bridging effect of fibers.
Moreover, due to the fiber bridging effect, tensile and shear stresses can
be transferred through multiple cracks in ECC members. As a funda-
mental mechanism governing the behavior of cracked ECC members
under shear loading, the shear transfer mechanism of fibers on the crack
surface must be properly understood. While crack fiber bridging be-
havior of ECC under direct tension has been widely studied [4,8,25],
little attention has been paid to the effect of fibers on the shear transfer
behavior of cracked ECC. Several experimental studies have been con-
ducted on this issue [21,26], but theoretical models considering the
fiber bridging action for quantitatively evaluating the shear transfer
capacity of cracked ECC are rather rare. Kabele [27,28] built a multi-
scale framework for modeling structural performance of HPFRCC, in
which analytical models for simulating the bridging stresses of a fiber-
bridged crack under opening and sliding are outlined from microscale
to mesoscale. However, the model did not consider two-way fiber
pullout which is a commonly observed mechanism in ECC. Also, the
modeling of matrix spalling is relatively basic as the occurrence of
spalling is assumed to be governed by an arbitrary fiber inclination
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angle.
This paper aims at establishing a micromechanics-based theoretical

model to describe the shear transfer mechanism on the crack surface of
ECC with respect to the fiber bridging action. Following the framework
outlined by Kabele [27,28] and focusing on cementitious composites
reinforced with flexible fibers, both the normal stress along the crack
opening direction and the shear stress transferred parallel to the crack
surfaces are derived under the coupled effect of crack opening dis-
placement (COD) and shear sliding. The fiber snubbing effect and
strength reduction of inclined fibers, fiber rupture, matrix spalling as
well as two-way fiber pullout mechanism are considered. With the
proposed model, the behavior of a single crack in ECC under mixed
crack mode is analyzed and discussed. The effects of various micro-
mechanical parameters on the shear transfer behavior on the crack
surface of ECC are investigated. The simulation results can provide
insight on the behavior of ECC under shear loading when cracks are
propagating under mixed mode. It is expected that the proposed model
will provide useful fundamental understanding for the further devel-
opment of a rational model for predicting the shear behavior of ECC
members.

2. Modeling of single fiber behavior under combined opening and
sliding

2.1. Modeling of single fiber pullout behavior

Prior to establishing a model for simulating the crack bridging be-
havior, the single fiber pullout behavior against the surrounding matrix
should be first investigated. Single fiber pullout tests [5,8] indicate that
two stages can be observed when a fiber embedded in matrix is sub-
jected to a pullout force, and they are: (1) debonding stage and (2)
pullout stage. The debonding process can be simulated as the propa-
gation of a tunneling crack along the interface between fiber and ma-
trix. The pullout stage begins after complete debonding of the interface
which is usually accompanied by a load drop. In the debonding stage,
the behavior of the interface is controlled by both chemical bond and
frictional bond; while in the pullout stage the behavior of the interface
is fully governed by the frictional bond [8,25]. The pullout force (P)
versus pullout displacement (u) relation of an aligned fiber with a
certain embedded length (Le) was theoretically derived by Lin et al.
[25] as:
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in which, Ef and df are Young's modulus and diameter of the fiber, re-
spectively, and η is a parameter representing the ratio of effective
stiffness between fiber and matrix. Eq. 1 can fully describe the single
fiber pullout behavior by assuming constant frictional bond (τ0) and
chemical bond (Gd) of the interface at the debonding stage (Eq. 1(a)),
and by setting a coefficient β to consider the slip-hardening/softening
effect during the pullout stage (Eq. 1(b)). The same P-δ relation is ap-
plied in the present study. The critical displacement (u0) at which the
fiber is completely debonded is given by:
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For randomly distributed short fiber reinforced cementitious com-
posites, most of the fibers are not oriented normal to the crack plane.
When a randomly oriented fiber is subjected to a pullout force due to
pure opening of a crack as shown in Fig. 1(a), the fiber bridging force
will increase due to the “snubbing effect” [29]. The pullout load for an
inclined fiber (P(ϕ)) is then related to the pullout force of an aligned
fiber (P(0)) through the following equation, assuming the fiber to

change direction over a frictional pulley [4,30,31].

=P ϕ P e( ) (0) fϕ (3)

In Eq. 3, the parameter f is defined as snubbing coefficient.

2.2. Consideration of shear sliding

When the two surfaces of the crack shown in Fig. 1(a) begin to
undergo relative sliding, the fiber bridging the two crack surfaces will
be pulled out further and the part of fiber between the crack surfaces
will rotate by an angle as shown in Fig. 1(b). At a given crack opening
displacement (COD), ω, and sliding, Δ, the rotating angle γ and the
actual pullout length δ are related by the following equations:

= ⎛
⎝

⎞
⎠

γ
ω

arctan Δ
(4)

= +δ ωΔ2 2 (5)

The bridging force (P) along the pulled-out part of the fiber can be
resolved to a normal component (Pn) and a tangential component (Pt),
as shown in Fig. 1(c). The force Pn and Pt can be considered as the
bridging force for resisting crack opening and sliding, respectively, and
are expressed as:

=P P γcosn (6)

=P P γsint (7)

Due to the rotating of the fiber, the snubbing effect on the pullout
behavior of single fiber is changed. In Eq. 3, the expression of snubbing
effect is a function of ϕ, however, sliding has resulted in a change of the
angle between the embedded and pulled out parts of fiber. To correctly
describe the snubbing effect of single fiber behavior under combined
opening and sliding, the expression should be modified as

= =P α P g α P e( ) (0) ( ) (0) fα (8)

The key to modeling the single fiber pullout behavior under com-
bined opening and sliding is therefore to determine the intersection
angle α. More generally, a 3D randomly oriented fiber bridging the
crack is taken into account as shown in Fig. 2. Taking the intersection of
the fiber and upper crack plane as the origin, a Cartesian coordinate η-
μ-ξ is defined in Fig. 2, in which the plane μ-ξ represents the upper crack
surface and η-axis is normal to the crack plane. The crack surfaces are
assumed to slide along the direction of the μ-axis. To express the or-
ientation of the embedded and pulled out components of the fiber
bridging the crack, a spherical coordinate system is introduced, and the
relation between the two coordinates is also depicted in Fig. 2. The
orientation of the embedded part of the fiber is determined by arbitrary
polar angle ϕ and azimuthal angle θ. After sliding, the relative geo-
metric relationships among ϕ, θ, rotating angle γ and intersection angle
α can be observed from Fig. 2. Based on the relative geometric re-
lationships of the angles, the intersection angle α can be derived with
trigonometric transform method and expressed as:

= +α ϕ γ ϕ γ θarccos(cos cos sin sin cos ) (9)

In the case of 2D random distribution, the intersection angle α can
be obtained by setting θ=0 in Eq. 9 to simplify the expression into:

= −α γ ϕ| | (10)

2.3. Consideration of fiber strength reduction and rupture

For those fibers with strong slip-hardening behavior after fully de-
bonded, Yang et al. [8] suggested that fibers with sufficiently long
embedded length will rupture during the pullout process rather than
being completely pulled out. In addition, some fibers are vulnerable to
bending and shear, and consequently exhibit strength reduction effect
when loaded at an inclined angle to the crack plane. This strength

C. Wu et al. Cement and Concrete Research 107 (2018) 253–263

254



reduction effect was characterized with an exponential expression
proposed by Kanda and Li [32] as follows:

= − ′σ ϕ σ e( ) (0)fu fu
f ϕ (11)

where σfu is the fiber rupture strength and f' is the fiber strength re-
duction coefficient.

In this study, the same form is used except that the inclined angle ϕ
is replaced by α. In the analysis procedure, fiber rupture will be con-
sidered when the calculated pullout force at an inclined angle (P(α))
exceeds the rupture force (Prp(α)):

> = − ′P α P α P e( ) ( ) (0)rp rp
f α (12)

in which, Prp(0) is the rupture force of an aligned fiber, and
Prp(0)= σfu(0)∙Af.

By substituting Eq. (8) into the inequality (12), it can be derived
that a fiber will rupture if the following inequality is satisfied:

> − ′+P
P

e(0)
(0)rp

f f α( )

(13)

2.4. Consideration of two-way debonding/pullout

For a fiber crossing a crack plane, the embedded fiber lengths on the
two sides of the crack are generally different. If the bridged fiber does
not exhibit slip hardening behavior in the pullout stage (β≤ 0), the
fiber force will decrease with the increasing crack opening/sliding after
the shorter embedded side of the fiber is completely debonded, and
consequently the side with longer embedded length will never enter the
pullout stage. In this case, we only need to consider one-way de-
bonding. However, for fibers with slip hardening behavior in the
pullout stage (β > 0), increase in applied force required for continued
pullout of the shorter embedded side may result in full debonding and
pullout of the longer embedded side.

The consideration of two-way debonding/pullout was first

suggested by Wang et al. [33], and the modeling of two-way fiber de-
bonding/pullout under pure crack opening was proposed in Yang et al.
[8]. The modeling of two-way fiber debonding/pullout under the
combined crack opening and sliding is illustrated in Fig. 3(a). At given
ω and Δ of a single crack, the total actual pullout length δ can be de-
termined by Eq. (5), and can be considered as the sum of pullout lengths
in both sides and expressed as:

= +δ δ δS L (14)

in which, δS and δL are the pullout length contributed from the sides
with shorter embedded length (LS) and longer embedded length (LL)
respectively.

As shown in Fig. 3(b), with the increase of δ, three possible condi-
tions may be experienced before the fiber is ruptured or fully pulled
out. As the fiber force acting on the two sides must be the same, δS and
δL can be determined with the following equations corresponding to
three different conditions [8,34].

(1) Two-way debonding:

= = <δ δ δ δ δ1
2

, ( 2 )L S S0 (15)

(2) Pullout-debonding:

= > <P δ L P δ L δ δ δ δ( , ) ( , ), ( , )d L L p S S S S L L0 0 (16)

(3) Two-way pullout:

= > >P δ L P δ L δ δ δ δ( , ) ( , ), ( , )p L L p S S S S L L0 0 (17)

The debonding load Pd and pullout load Pp are given by Eq. 1(a) and
Eq. 1(b), respectively. While δ0S and δ0L are the critical displacement

Fig. 1. A single fiber under (a) tension, (b) shear and (c) resolution of fiber force.

Fig. 2. The spatial position relation of the angles.

Fig. 3. Schematic diagram of two-way pullout consideration of a fiber: (a) diagram of
two-way fiber pullout mechanism; (b) three balance conditions.
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corresponding to complete debonding in the shorter and longer em-
bedment side respectively, and can be determined with Eq. (2) by in-
putting corresponding embedded length as follows:

⎧
⎨⎩

=
=

δ u L
δ u L

( )
( )

S S

L L

0 0

0 0 (18)

2.5. Consideration of matrix micro-spalling

It is widely observed that matrix spalling would happen around the
fiber exit point when the pullout force is at an angle to the embedded
fiber segment [31,35,36]. The spalling of matrix usually leads to re-
laxation of the fiber and change of inclination angle, which can result in
the delaying or prevention of fiber rupture; therefore, it could affect the
fiber bridging behavior and should be considered. Kabele [27,28] as-
sumed that matrix spalling occurs if the angle between the fiber em-
bedment direction and relative crack displacement direction of a fiber
(i.e. angle α in this study) exceeds a constant critical angle, and the
fibers that may induce matrix spalling are not included in the calcula-
tion of total bridging force. However, the critical angle should not be
constant [37], and even though the fiber is relaxed after spalling, it will
become taut again on further displacement if the fiber is not ruptured.
Based on the fiber pullout test result of PVA-ECC, Yang et al. [8] pro-
posed a semi-empirical equation for estimating the spalling size, in
which the spalling size is assumed to be proportional to the external
load acting on the fiber exit point, and inversely proportional to matrix
tensile strength and fiber diameter. This method is proposed for fibers
under pure crack opening, in which the inclination angle cannot exceed
π/2. However, for combined opening and sliding, which is the focus of
this paper, the intersection angle α between the direction of embedded
fiber segment and the pullout direction may theoretically vary from 0 to
π. For this case, the applicability of the equation in Yang et al. (2008)
needs to be further verified.

As a matter of fact, matrix spalling is governed by the component of
reaction force acting perpendicular to the matrix at the exit point (Rsp in
Fig. 4). Rsp can be calculated from the force balance as:

=R P α α( ) sinsp (19)

To model matrix spalling, Leung et al. [36] introduced an effective
size of frictional pulley, Lr, over which Rsp is assumed to distribute
around the exit point of the fiber. Spalling is assumed to occur if Rsp is
larger than a spalling force Fs, which is obtained in the following
manner. Using finite element analysis, Leung and Li [37] obtained the
spalling force per unit length Fsp as a function of h/rf, in which h is the
distance between the bottom of the fiber and crack surface and rf is the
fiber radius (Fig. 5(a)). After being normalized by rfσm, where σm is the
effective spalling strength of matrix, the relationship between non-di-
mensional terms Fsp/(rfσm), and h/rf is shown in Fig. 5(b). Such a re-
lationship has been found to be insensitive to fiber/matrix modulus
ratio in Leung and Li [37]. Since the distance along the fiber, x, can be

expressed, at any inclination angle ϕ, as x= htanϕ, the relationship
between Fsp and x can be obtained. Assuming matrix spalling occurs at
the same discrete length equal to Lr, the force required for the Nth piece
of matrix to spall, Fs(N), can be obtained by integrating Fsp from x=(N-
1)Lr to NLr.

This method is more precise and general and thus applied in this
study. For simplification, the relationship between Fsp/(rfσm) and h/rf
obtained numerically in Leung and Li [37] is fitted by a closed form
equation, which can provide good agreement with numerical data:

=
+

≈Y aX
X

a
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, 1.85
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above, the spalling force per unit length Fsp can be expressed as:
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The spalling force Fs required at any spalling size xsp can be obtained
by integrating Fsp from 0 to xsp which gives the following equation:
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⎝
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⎠
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d
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1
4
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2 cot
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f

2

(22)

In Eq. (22), the effective spalling strength σm is an empirical para-
meter that needs to be obtained through data fitting.

Unlike the method proposed in Leung et al. [36], the spalling pro-
cess is considered to be “continuous”, and thus the matrix spalling size,
Lsp, under certain Rsp can be obtained by solving the following equation:

Fig. 4. Schematic diagram of matrix spalling for an inclined fiber under opening and
sliding.

Fig. 5. Derivation of matrix spalling criterion in Leung et al. [36] (a) geometrical re-
lationship between x and h; (b) fitting of Fsp/(rfσm)–h/rf relationship.

C. Wu et al. Cement and Concrete Research 107 (2018) 253–263

256



⎜ ⎟= − ⎛
⎝

+ ⎞
⎠

R ad kσ L ad kσ ϕ
L ϕ

d
1
2

1
4

tan ln 1
2 cot

sp f t sp f t
sp

f

2

(23)

In Eq. (23), a spalling coefficient, k= σm/σt is introduced, in which
σt is the tensile strength of matrix. By setting the parameter k to be
1500, the calculated spalling length is approximately in the same range
as the size of spalling in PVA-ECC specimens reported in Yang et al. [8].
This value of k is hence employed in the simulations of this study.

As mentioned above, spalling relieves the fiber stress and changes
the fiber inclination angle α to a smaller angle α′ (Fig. 4). For modeling
the spalling effect in fiber bridging under pullout or crack opening,
Leung et al. [36] and Yang et al. [8] derived the altered inclination
angle and modified amount of pulling focusing on the one-way and two-
way pullout respectively. Similarly, in this study, the altered inclination
angle α' and modified amount of pulling δeff after spalling can be ob-
tained with the following equations:

′ = + +δ L δL α δ4 4 cossp sp
2 2

(24)

′ = ⎛

⎝
⎜

+ ′ −
′

⎞

⎠
⎟α

L δ δ
δ L

arccos
4

4
sp

sp

2 2 2

(25)

= ′ − ≥δ δ L2 0eff sp (26)

It should be noted that since the range of α is from 0 to π, arccosine
function is applied instead of arcsine function in Eq. (25). After spalling,
the angle α in Eq. (19) and δ in Eq. (14) should be replaced by the
altered inclination angle α′ and modified amount of pulling δeff re-
spectively. It should be noted that when angle ϕ approaches π/2, matrix
spalling will occur easily even under a low Rsp and the spalling size may
be infinite large. In practice, the spalling size cannot exceed the fiber
embedment length Le, therefore when the calculated Lsp > Le, the re-
lated fiber force is reduced to zero and not included in the total bridging
force. In some case, the calculated Lsp may be larger than δ'/2, and leads
to δeff < 0. In this case, the fiber is usually no longer in tension and
likely to buckle, therefore, the fiber cannot contribute to the total
bridging force and the related fiber force is also considered as zero
when δeff < 0.

Another special phenomenon that should be noticed is that when a
single bridged crack is under pure crack opening, matrix spalling can
occur theoretically for fibers with any inclined angle if the load acting
on the fiber exit point is high enough and the fiber has not ruptured.
However, when a single bridged crack is under combined opening and
sliding, spalling may never occur for fibers with α within a certain
range. Taking 2D fiber distribution as an example, Fig. 6 shows a fiber
with various inclined angles pulled along a certain direction. The em-
bedded fiber segment divides the matrix around the fiber into two parts.
The part with acute angle between the embedded fiber segment and
crack plane is defined as “weak side”, while the other part is defined as
“strong side” (as shown in Fig. 6(a)). It is obvious that spalling will
always occur at the weak side of the matrix. Specifically, for a fiber
bridging a crack under pure opening, for any inclined angle, the force
component acting perpendicular to the embedded fiber segment Psp will
lead to matrix spalling near the fiber exit point at the weak side if Psp is
high enough (as shown in Fig. 6(a) and (b)). For a bridged fiber under

combined opening and sliding, in the condition shown in Fig. 6(c) and
(e), Psp acts towards the matrix at the weak side and thus spalling will
occur when Psp exceeds a critical spalling force. However, for the si-
tuation illustrated in Fig. 6(d), the Psp acts towards the strong side of the
matrix and spalling will never occur. Therefore, in the case of 2D
opening and sliding, spalling will not occur when 0≤ ϕ≤ γ (ϕ∈ [−π/
2,π/2]), otherwise, matrix may spall when the spalling criterion is sa-
tisfied. Similarly, for 3D opening and sliding, it is derived that spalling
will never occur when the following inequality is satisfied:

− ≤ϕ γ ϕ γ θsin cos cos sin cos 0 (27)

Therefore, in the numerical procedure of the proposed model, the
spalling criterion will not be checked if the inequality (27) is satisfied.

3. Shear/normal bridging stress-crack opening/sliding relations

With the equations derived above, the single fiber behavior under
combined opening and sliding can be completely modeled. However, in
the fiber composite, a single crack is bridged by numerous fibers with
various locations and orientations. Due to the randomness of fiber lo-
cation and orientation, the crack bridging stress-crack opening/sliding
relation can only be obtained statistically. Li et al. [29] proposed a
method for modeling the composite crack bridging stress-crack opening
relation by averaging the contribution of all fibers crossing the crack
plane at any possible location (along its length) and orientation. This
method is also applied in this study, and the averaged crack bridging
shear stress (τb), considering the randomness of fiber distribution, can
be obtained by the following integral form:

∫=τ ω
V
A

P δ z g α p z p ϕ p θ dzdϕdθ( , Δ) ( , ) ( ) ( ) ( ) ( )b
f

f
t

(28)

where, Vf and Af are respectively the fiber volume fraction and cross-
section area. z is the distance from fiber centroid to the crack plane, and
z= (Lf/2-Le)cosϕ. Pt(δ, z) is the shear bridging force contributed by a
single fiber with a certain pullout displacement and centroidal distance
z, and can be calculated from Pt= Psinγ, where P is the force along the
pulled-out part of the fiber. Function p(z), p(ϕ) and p(θ) are the prob-
ability density functions of z, ϕ and θ, respectively. It should be noted
that the integral for obtaining crack bridging stress-crack opening re-
lation in Lin et al. [25] and Yang et al. [8] does not include the angle θ,
but in this study, orientation angle θ should be included as 3D random
distribution of the fibers is considered. In the case of uniform random
distribution of fibers, the probability density functions are given by the
following expressions:
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= ∈p θ
π

θ π( ) 1
2

, [0, 2 ] (31)

In general, when the fiber is fully 3D randomly distributed, Eq. 28

Fig. 6. Possible conditions for a fiber under opening or combined opening and sliding.
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can be further expressed as:
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Similarly, the averaged crack bridging normal stress (σb) can be
expressed as:

∫ ∫ ∫=
= = =
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V γ
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P δ z g α p z p ϕ p

θ dzdϕdθ
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(33)

Since the analytic solution for the integrals in Eq. (32) and Eq. (33)
is very difficult to obtain when considering all the micro-mechanisms
discussed in Section 2, numerical computation is hence employed. The
flow chart of the numerical procedure for computing the composite
crack bridging shear/normal stress-crack opening/sliding relation is
shown in Fig. 7. It should be noted that, for simplicity, Cook-Gordon
effect [38] is neglected in this study. By coding with Matlab, a 3D
curved surface of τb(ω,Δ) is generated and plotted in Fig. 8. The values
of the micromechanics parameters used in this model are listed in
Table 1, which are based on the related model inputs in Yang et al. [8].

Fig. 7. Flow chart of the numerical procedure.

Fig. 8. The 3D curved surface of τb(ω,Δ) with the proposed model.
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The comparison of τb-Δ curves calculated by the models with one-
way pullout, two-way pullout consideration and two-way pullout plus
matrix spalling, respectively, are shown in Fig. 9. When using the model
with one-way pullout mechanism, the predicted maximum shear stress
that can be transferred through a fiber bridged crack is about 2.8MPa,
and its sliding displacement corresponding to the peak shear stress is
about 40 μm. If two-way pullout mechanism is modeled but without
considering matrix spalling effect, the calculated peak stress and its
related sliding displacement are about 3.2MPa and 60 μm, respectively.
By using the model considering both two-way pullout and matrix
spalling, the calculated peak stress and its related sliding displacement
are about 3.5MPa and 120 μm, respectively. It can be easily observed
that both the peak stress and its corresponded sliding displacement
predicted by the model considering two-way pullout are higher than
those calculated by model considering only one-way pullout. Com-
paring the predicted results, if matrix spalling is considered, the slope of
ascending brunch of the calculated τb-Δ curve is lower, but both peak
stress and its related sliding displacement are higher. The reason is as
follows. Matrix spalling always leads to relaxation of the related fiber,
which reduces the bridging stress. Meanwhile, matrix spalling also

effectively reduces the intersection angle α and consequently delays the
rupture of fibers, leading to a final increase of the peak bridging stress.
When the crack is under pure opening, Yang et al. [8] indicates that the
contribution of matrix spalling to crack opening is rather small, but in
the case of a crack under combined opening and sliding presented in
this paper, matrix spalling is found to significantly affect the τb-Δ re-
lationship. It can be explained that when shear sliding occurred in a
crack, fibers bridging the crack are more vulnerable to rupture, and
therefore the contribution of matrix spalling to delay the fiber rupture
may become an important factor affecting the τb-Δ relationship.

4. Shear transmission on crack surface due to fiber bridging

In order to analyze the behavior of cracked members under shear
loading the shear transfer behavior of crack surface must be properly
modeled. However, shear transfer in cracks is a complicated phenom-
enon that is difficult to measure. For ordinary reinforced concrete (RC)
members, shear stresses are transferred in cracks by a combination of
aggregate interlock in concrete and dowel action in reinforcement, and
the cracked concrete carry very low tensile stress. In the case of fiber
reinforced cementitious composites (FRCC), significant tensile stress
normal to the crack surface and shear stress along the crack surface can
both be carried due to the fiber bridging action. In addition, it has been
reported [21] that the interlock of fine aggregates in FRCC also con-
tributes to the shear transfer of cracks when the crack opening does not
exceed half of the maximum aggregate size. In addition, the dowel
action should also be considered for FRCC with steel rebars. Since ECC
generally does not contain coarse aggregates, and the maximum ag-
gregate size of fine aggregate is very small, the effect of aggregate in-
terlock should be limited except at very small crack openings. The
dowel action from steel rebar is a different research topic that should be
investigated separately. This study will focus on developing a model for
the fiber bridging action alone, while the aggregate interlock and dowel
action are left for future investigations.

Applying the model developed above, two sets of curves for various
COD, including shear bridging stress vs. sliding curves and bridging
normal stress vs. sliding curves, are plotted in Fig. 10(a) and (b) re-
spectively. In Fig. 10(a) and (b), each curve was obtained by calculating

Table 1
Input value of micromechanics parameters used in proposed model.

Fiber parameters Interface parameters Matrix parameters

df σfu Vf τ0 Gd β f f ′ Em σm k
/μm /mm /GPa /MPa /% /MPa /J/m2 /GPa /MPa
39 12 22 1060 2 1.31 1.08 0.58 0.2 0.33 20 5 1500

Fig. 9. Shear bridging stress-sliding curves with COD of 0.03mm using various models.

Fig. 10. Normal stress/shear stress-sliding curves with fixed COD.

C. Wu et al. Cement and Concrete Research 107 (2018) 253–263

259



the stresses at fixed COD and increasing sliding displacement. It can be
seen from the Fig. 10(a) that the peak shear stress decrease with in-
creasing COD (as shown in the sub-figure in Fig. 10(a)), while the
sliding displacements corresponding to the peak shear stresses increase.
Moreover, larger COD leads to lower initial slopes of the shear stress-
sliding curves, and the post-peak curves for relatively small COD first
drop rapidly and then approach similar values at increasing sliding
displacement. The physical explanation is as follows. When shearing is
applied on the crack plane, the part of fiber between the crack faces is
rotated to produce a tangential force component which increases in-
itially with sliding distance as the rotated angle is increased. For the
curves with small initial COD, most of the fibers are not pulled out or
ruptured at the rising part. With increased sliding, fiber pull-out or
rupture leads to the drop in stress after the peak. When the initial COD
is large, a larger number of fibers crossing the crack plane have already
been pulled out or ruptured before shear sliding starts. The shear stress
for a certain sliding displacement therefore decreases with the COD.
This can also be proved by the percentage of pulled-out/ruptured fibers
in the analysis. For the case with COD=0.02 (small initial COD), no
fiber was pulled out or ruptured before shear sliding was applied, and
nearly 15% fibers pulled out or ruptured when the shear stress on the
crack reaches the peak, after which the percentage of pulled-out/rup-
tured fibers kept increasing and the bridging shear stress started to
decrease. However, for the case with COD=0.2 (very large initial
COD), about 77% fibers have already been pulled out or ruptured be-
fore shear sliding was applied, while at the peak shear stress the pulled
out or ruptured fibers account for 83% of the total number. Fig. 10(b)
shows that the normal stresses in all curves exhibit a downward trend
with the increasing sliding displacement, and with increasing initial

COD, the peak normal stresses (also the initial stresses without shear
sliding) increase at first and decrease afterwards, which follows the
curve of bridging stress-COD of a single crack under pure opening (as
shown in the sub-figure in Fig. 10(b)). The following reasons account
for the decline of the normal stresses with growing sliding displace-
ment. In this analysis, COD corresponding to each curve is fixed, while
the sliding displacement increase, and hence the rotated angle γ of each
fiber segment bridged between the two crack surfaces will increase. It is
clear that the force component normal to the crack plane is the product
of fiber pullout force and cosγ. On one hand, cosγ is a decreasing
function when γ vary from 0 to π/2; on the other hand, although the
total pullout length of fibers δ will increase with rising sliding dis-
placement, the growing γ leads to larger α for parts of the fibers, which
may cause more severe fiber rupture (due to fiber strength reduction
effect) or matrix spalling, and consequently the total fiber force along
the pullout direction may reduce more rapidly. Taking the curve with
COD=0.06 as an example, when sliding displacement increases from 0
to 0.013, γ varies from 0 to 0.217 and cosγ decrease from about 1 to
0.98. Although the total fiber force per unit area along the pullout di-
rection increases from 4.47 N/mm2 to 4.39 N/mm2, the normal stress
still decrease from 4.47MPa to 4.29MPa. In addition, the percentage of
pulled-out/ruptured fibers increases from 16% to 19%, which also re-
tards the increase of total fiber force.

By fixing the sliding displacement and increasing COD, Fig. 11(a)
and (b) show bridging shear stress vs. COD curves and bridging normal
stress vs. COD, respectively. The characteristic shown in Fig. 11(a) is
fairly similar to that of Fig. 10(a). However, different from Fig. 10(b),
shear stress vs. COD curves in Fig. 11(b) does not just exhibit a
downward trend. Instead, the curves are usually rising at first and de-
crease after reaching their peaks. In this case, since the sliding dis-
placement is fixed for each curve, increasing COD will lead to the de-
crease of rotated angle γ; meanwhile, the force component tangent to
the crack plane is the product of fiber pullout force and sinγ. Although
the value of sinγ decreases with decreasing γ, the total pullout length of
fibers δ increases with rising COD and may lead to increasing pullout
force. Moreover, the declining γ may restrain fiber rupture or matrix
spalling due to the decrease of α. Hence the shear stress vs. COD curves
may contain an ascending branch.

In reality, sliding between two crack surfaces can only occur after
the crack has been formed, therefore, a COD should be present before
sliding starts. Assuming that a crack with an initial COD of 0.01mm is
under proportional loading, i.e. the increment ratio of sliding dis-
placement to COD (δΔ/δω) is constant, three loading paths with δΔ/δω
equals to 0.25, 1 and 4 respectively are considered in this study as
shown in Fig. 12. The responses under these three loading paths are
shown in Fig. 13. It can be seen that the maximum normal stress of the

Fig. 11. Normal stress/shear stress-COD curves with fixed sliding.

Fig. 12. Diagram of load path.
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crack under load path 1 is the highest while its peak shear stress value is
the lowest since the COD is always larger that sliding displacement and
the COD will mainly govern the pullout behavior. On the contrary, the
crack under load path 3 can transfer the highest shear stress, but the
maximum normal stress is the lowest. And it can also be seen that the
normal stress decreases consistently with increasing sliding displace-
ment for the crack under load path 3. For the crack under load path 2,
although the increments of sliding displacement and COD are the same,
the value of peak shear stress (about 2.5 MPa) is slightly lower than that
of peak normal stress (about 3MPa) due to the presence of initial COD.

5. Effect of micromechanical parameters

The fiber bridging behavior of a crack is significantly influenced by
the properties of fiber, matrix and especially their interface, which can
be quantified by different micromechanical parameters. Since the de-
rivation of the model is based on micromechanics, the effect of various
micromechanical parameters can be investigated to provide insights on
material design to improve the shear behavior. In this study, three
micromechanical parameters: fiber length Lf, slip-hardening coefficient
β and snubbing coefficient f, are considered to analyze their effects on
the fiber bridging behavior of a single crack in a cementitious compo-
site.

The selection of fiber, mainly fiber type, content, length, etc., has a
large influence on the performance of the fiber composite. Different
types of fibers usually result in different mechanical properties of the
composite and generate different fiber/matrix interfacial properties
which will also affect the mechanical behaviors. In terms of fiber con-
tent, it can be easily observed in Eqs. (32) and (33) that the bridging
stresses are linearly proportional to the fiber volume fraction Vf.
However, in practice, excessively high Vf may lead to workability
problems which cannot be accounted for in the proposed model.
Fig. 14(a) shows the effect of fiber length on the response curve of shear
bridging stress vs. sliding displacement. It can be seen from Fig. 14(a)
that the peak shear stress increases with the increase of fiber length

when initial COD is 0.03mm; conversely, τb-Δ curve with shorter fiber
length has higher peak shear stress with larger initial COD of 0.06mm.
This is because although the bridging stress is higher with longer fibers,
fiber rupture is also easier to occur with increasing fiber length. When
the COD is small, there is limited fiber rupture so longer fibers give
better results. When the COD is large, longer fibers are easily ruptured
so shorter fibers are preferable.

Besides the properties of the fiber itself, the property of fiber/matrix
interface is also a governing factor to the crack bridging behavior. The
slip-hardening coefficient β controls the pullout behavior of a single
fiber embedded in a matrix after the fiber is completely debonded.
Fig. 14(b) plots the τb-Δ curves with different values of β (β=0.58,
β=0 and β=−0.58). It is demonstrated in the figure that the peak
stress in the τb-Δ curve for β=0.58 is larger than other cases. Inter-
estingly, although the peak stress with β=0 is lower than that with
β=0.58, the decreasing rate of the post peak branch in the τb-Δ curve
with β=0 is much lower. The physical explanations are as follows.
According to Eq. 14, the bridged fibers exhibit slip hardening behavior
in the pullout stage when β > 0, slip softening when β < 0, and linear
slip softening when β=0 (as shown in the sub-figure in Fig. 14(b)). For
fibers that exhibit slip hardening behavior, more and more fibers will be
ruptured with the increase of crack opening and sliding. In contrast, for
those fibers with slip softening behavior, fiber will not rupture after the
fiber is completely debonded since the fiber force will decrease in the
pullout stage, and thus fibers can be fully pulled out theoretically if the
chemical bond between the fiber and matrix is not high. When β=0,
the P-u relationship in the pullout stage decreases in a linear manner
while the pullout force for β < 0 shows the trend of a concave para-
bola, and may decrease rapidly to low values. Therefore, post-peak τb-Δ
curve is steeper for β < 0 than that for β=0. The snubbing coefficient
f also significantly affects the amount of fibers that will rupture. The-
oretically, higher value of f renders fibers more vulnerable to rupture.
This is well reflected in Fig. 14(c), in which, the τb-Δ curves show de-
crease of shear bridging stress with the increase of f. In addition, the
interfacial friction factor τ0 is also an important effect factor on the

Fig. 13. Normal stress/shear stress-sliding/COD curves with proportional loading.
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fiber bridging behavior of a crack. The effect of τ0 has been analyzed by
the authors, and is found to be qualitatively similar to the effect of β
(i.e., a higher leads to higher peak stress but more rapid post-peak drop
due to increasing fiber rupture). Due to the similarity, detailed results
are not shown in this paper.

6. Discussion of the applicability for the proposed model

In the present model, fibers are assumed to be perfectly flexible
(with zero flexural stiffness), and thus fibers will act like string and
snubbing friction model is used. Theoretically speaking, the snubbing
mechanism can rationally represent the behavior of flexible fibers (low
modulus and/or small diameter for low bending stiffness, and high
rupture strain), and is not perfectly suitable for fibers with high stiffness
or ductile yielding behavior [4]. It should be noted that the PVA or PE
fibers employed for making ECC are very small in size. Therefore, even
though the modulus of these fibers is higher than that of concrete, the
fiber can still be treated as a flexible element as long as the crack
opening (and hence the “bent” part of the fiber) is not too small, so the
snubbing model is applicable. It can also be noted that for fibers with
slip softening behavior at pullout stage, one-way pullout model can be
used in this model for simplicity without losing accuracy; while, for
fibers with slip hardening behavior at pullout stage, mechanism of two-
way pullout has to be considered.

The proposed model is unusable for ductile fibers, such as steel fi-
bers, since the bending effect can not be neglected. To model those
fibers that flexural stiffness are not negligible, Kabele [28] considered
the bridged fiber component between the crack surfaces as a beam and
derived an equation for calculating the shear force carried by a single
fiber using Timoshenko beam theory.

The applicability of the proposed model is listed in Table 2.

7. Conclusions

In this study, bridging stresses, including normal stress and shear
stress, on the crack surfaces of ECC under combined opening and shear
sliding are derived via micromechanics and averaging technique.
Specifically focusing on flexible fibers, the proposed model can be seen
as an expansion of the fiber-bridging model developed by Yang et al.
[8], which only covers the normal bridging stress vs. COD relationship.
Due to the shear sliding between the crack surfaces, the snubbing effect,
fiber strength reduction, fiber rupture and matrix spalling criteria are
modified or redeveloped. Two-way fiber pullout mechanism is also
considered in this study for fiber systems with slip hardening behavior
at pullout stage, such as PVA-ECC system.

More importantly, the model provides a theoretical interpretation
for the contribution of fiber bridging action on the shear transfer be-
havior of cracked ECC. By varying COD/sliding, the normal/shear
bridging stress vs. COD/sliding curves are analyzed to investigate be-
havior of a single crack in ECC under mixed mode crack condition. To
simulate the commonly occurred situation, the responses of a crack
with initial COD under different proportional loadings are also ana-
lyzed. In addition, the effects of fiber length Lf, slip-hardening coeffi-
cient β and snubbing coefficient f on the shear transfer behavior on the
crack surface of ECC are investigated through a parametric study. The

Fig. 14. Effect of micromechanical parameters on shear stress-sliding relation: (a) Effect
of Lf; (b) Effect of β; (c) Effect of f.

Table 2
The applicability of proposed model.

Fiber type Representative fiber Applicability

Brittle fiber with low stiffness and high rupture strain Low modulus PP fiber Model without considering fiber rupture and matrix spalling
Brittle fiber with relatively high stiffness and low rupture strain PVA fiber Model considering fiber rupture and matrix spalling
Fiber with slip softening behavior at pullout stage PP fiber Model considering one-way pullout
Fiber with slip hardening behavior at pullout stage PVA fiber Model considering two-way pullout
Ductile fiber Steel fiber Unusable
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simulation results can provide insight on the behavior of ECC under
shear loading when cracks are propagating under mixed mode and
provide guidelines for selecting composite micro-parameters to im-
prove the shear behavior of ECC. The model also provides fundamental
information that can facilitate the development of a rational model for
predicting the shear behavior of ECC members, which will be developed
in the future.
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